Skip to main content
Log in

Extreme dehydration observed in Antarctic Turgidosculum complicatulum and in Prasiola crispa

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

Gaseous phase hydration effect of extremely dehydrated thallus of the Antarctic lichenized fungus Turgidosculum complicatulum and of green alga Prasiola crispa was observed using hydration kinetics, sorption isotherm, 1H-NMR spectroscopy and relaxometry. Three bound water fractions were distinguished: (1) very tightly bound water, (2) tightly bound water and (3) a loosely bound water fraction detected at higher levels of hydration. Sorption isotherm was sigmoidal in form and well fitted using Dent model. The relative mass of water saturating primary water binding sites was ΔM/m 0 = 0.055 for T. complicatulum and ΔM/m 0 = 0.131 for P. crispa. 1H-NMR free induction decays (FIDs) for T. complicatulum and for P. crispa were superpositions of a solid signal component, and one averaged liquid signal component for P. crispa thallus (\(T_{2L}^{*}\) ≈ 80 µs) or two liquid signal components coming from a tightly bound (\(T_{{2L_{1} }}^{*}\)≈ 71 µs) and from a loosely bound water fraction (\(T_{{2L_{2} }}^{*}\)≈ 278 µs) for T. complicatulum. 1H-NMR spectra recorded for T. complicatulum and for P. crispa thalli revealed one averaged mobile proton signal component L. The total liquid signal component expressed in units of solid (L 1 + L 2)/S suggests the presence of water soluble fraction in T. complicatulum thallus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319

    Article  CAS  Google Scholar 

  • Carpenter JF, Crowe JH (1988) The mechanism of cryoprotection of proteins by solutes. Cryobiol 25:244–255

    Article  CAS  Google Scholar 

  • Chapman BE, Roser DJ, Seppelt RD (1994) 13C NMR analysis of Antarctic cryptogam extracts. Ant Sci 6:295–305

    Article  Google Scholar 

  • Cowan DA, Green TGA, Wilson AT (1979) Lichen metabolism. 1. The use of tritium labelled water in studies of anhydrobiotic metabolism in Ramalina celastri and Peltigera polydactyla. New Phytol 82:489–503

    Article  CAS  Google Scholar 

  • Dent RW (1977) A multilayer theory for gas sorption. Part I: sorption of a single gas. Text Res J 47:145–152

    Article  CAS  Google Scholar 

  • Harańczyk H (2003) On water in extremely dry biological systems. Jagiellonian University, Kraków

    Google Scholar 

  • Harańczyk H, Strzałka K, Jasiński G, Mosna-Bojarska K (1996) The initial stages of wheat (Triticum aestivum L.) seed imbibition as observed by proton nuclear magnetic relaxation. Coll Surf A115:47–54

    Article  Google Scholar 

  • Harańczyk H, Węglarz WP, Sojka S (1999) The investigation of hydration processes in horse chestnut (Aesculus hippocastanum L.) and pine (Pinus silvestris L.) bark and bast using proton magnetic relaxation. Holzforschung 53:299–310

    Google Scholar 

  • Harańczyk H, Leja A, Strzałka K (2006a) The effect of water accessible paramagnetic ions on subcellular structures formed in developing wheat photosynthetic membranes as observed by NMR and by sorption isotherm. Acta Phys Pol, A 109:389–398

    Article  Google Scholar 

  • Harańczyk H, Pietrzyk A, Leja A, Olech M (2006b) Bound water structure on the surfaces of Usnea antarctica as observed by NMR and sorption isotherm. Acta Phys Pol, A 109:411–416

    Article  Google Scholar 

  • Harańczyk H, Bacior M, Olech MA (2008) Deep dehydration of Umbilicaria aprina thalli observed by proton NMR and sorption isotherm. Ant Sci 20:527–535

    Article  Google Scholar 

  • Harańczyk H, Bacior M, Jamróz J, Jemioła-Rzemińska M, Strzałka K (2009a) Rehydration of digalactosyldiacylglycerol model membrane lyophilizates observed by NMR and sorption isotherm. Acta Phys Pol, A 115:521–525

    Article  Google Scholar 

  • Harańczyk H, Bacior M, Jastrzębska P, Olech MA (2009b) Deep dehydration of Antarctic lichen Leptogium puberulum Hue observed by NMR and sorption isotherm. Acta Phys Pol, A 115:516–520

    Article  Google Scholar 

  • Harańczyk H, Leja A, Jemioła-Rzemińska M, Strzałka K (2009c) Maturation processes of photosynthetic membranes observed by proton magnetic relaxation and sorption isotherm. Acta Phys Pol, A 115:526–532

    Article  Google Scholar 

  • Harańczyk H, Kobierski J, Zalitacz D, Nowak P, Romanowicz A, Marzec M, Nizioł J, Hebda E, Pielichowski J (2012a) Rehydration of CTMA modified DNA powders observed by NMR. Acta Phys Pol, A 121:485–490

    Article  Google Scholar 

  • Harańczyk H, Pater Ł, Nowak P, Bacior M, Olech MA (2012b) Initial phases of Antarctic Ramalina terebrata Hook f. & Taylor thalli rehydration observed by proton relaxometry. Acta Phys Pol, A 121:478–482

    Google Scholar 

  • Harańczyk H, Kobierski J, Nizioł J, Hebda E, Pielichowski J, Zalitacz D, Marzec M, El-Ghayoury A (2013) Mild hydration of didecyldimethylammonium chloride modified DNA by 1H-nuclear magnetic resonance and by sorption isotherm. J Appl Phys 113:044702

    Article  Google Scholar 

  • Harańczyk H, Baran E, Nowak P, Florek-Wojciechowska M, Leja A, Zalitacz D, Strzałka K (2015) Non-cooperative immobilization of residual water bound in lyophilized photosynthetic lamellae. Cell Mol Biol Lett 20:717–735

    PubMed  Google Scholar 

  • Harańczyk H, Nowak P, Lisowska M, Florek-Wojciechowska M, Lahuta LB, Olech MA (2016) A method of water-soluble solid fraction saturation concentration evaluation in dry thalli of Antarctic lichenized fungi, in vivo. BB Reports 6:226–235

    Google Scholar 

  • Henssen A, Jahns HM (1974) Lichenes. Georg Thieme Verlag, Stuttgart

    Google Scholar 

  • Huiskes AHL, Gremmen NJM, Francke JW (1997) The delicate stability of lichen symbiosis: comparative studies on the photosynthesis of the lichen Mastodia tessellata and its free-living phycobiont, the alga Prasiola crispa. In: Battaglia B, Valencia J, Walton DWH (eds) Antarctic communities: species, structure and survival. Cambridge University Press, Cambridge, pp 234–240

    Google Scholar 

  • Jackson AE, Seppelt RD (1995) The accumulation of proline in Prasiola crispa during winter in Antarctica. Physiol Plantarum 94:25–30

    Article  CAS  Google Scholar 

  • Jacob A, Wiencke C, Lehmann H, Kirst GO (1992) Physiology and ultrastructure of desiccation in the green alga Prasiola crispa from Antractica. Bot Mar 35:297–303

    Article  Google Scholar 

  • Jänchen J, Meeßen J, Herzog TH, Feist M, de la Torre R, de Vera J-PP (2015) Humidity interaction of lichens under astrobiological aspects: the impact of UVC exposure on their water retention properties. Int J Astrobiol 14:445–456

    Article  Google Scholar 

  • Kappen L, Redon J (1987) Photosynthesis and water relation of three maritime Antarctic lichen species. Flora 179:215–229

    Article  Google Scholar 

  • Kohlmeyer J, Hawsworth DL, Volkmann-Kohlmeyer B (2004) Observations on two marine and maritime “borderline” lichens: mastodia tessellata and Collemopsidium pelvetiae. Mycol Progr 3:51–56

    Article  Google Scholar 

  • Kovačik L, Pereira AB (2001) Green alga Prasiola crispa and its lichenized form Mastodia tessellata in Antarctic environment: general aspects. Nova Hedwig Beih 123:465–478

    Google Scholar 

  • Kovačik L, Jancusova M, Pereira AB (2003) Green alga Prasiola crispa (Lightf.) Menegh. and its lichenized form Turgidosculum complicatulum (Nyl.) J. Kohlm. & E. Kohlm. In Antarctic environment: variable of growth habit. In: Olech MA (ed) The functioning of polar ecosystems as viewed against global environmental changes. Institute of Botany of the Jagiellonian University, Krakow, pp 51–56

    Google Scholar 

  • Meeßen J, Sánchez FJ, Sadowsky A, de la Torre R, Ott S, de Vera J-P (2013) Extremotolerance and resistance of lichens: comparative studies on five species used in astrobiological research II. Secondary lichen compounds. Orig Life Evol Biosph 46:501–526

    Article  Google Scholar 

  • Meeßen J, Wuthenow P, Schille P, Rabbow E, de Vera JP, Ott S (2015) Resistance of the lichen Buellia frigida to simulated space conditions during the preflight tests for BIOMEX-viability assay and morphological stability. Astrobiology 15:601–615

    Article  PubMed  PubMed Central  Google Scholar 

  • Nizioł J, Harańczyk H, Kobierski J, Hebda E, Pielichowski J, Ostachowicz B (2013) Hydration effect on solid DNA-didecyldimethylammonium chloride complexes measured using 1H-nuclear magnetic resonance spectroscopy. J Appl Phys 114:144701

    Article  Google Scholar 

  • Olech M (2004) Lichens of King George Island, Antarctica. The Institute of Botany of the Jagiellonian University, Kraków

    Google Scholar 

  • Øvstedal DO, Levis Smith RI (2001) Lichens of Antarctica and South Georgia: a guide to their identification and ecology. Cambridge University Press, Cambridge

    Google Scholar 

  • Paracer S, Ahmadijan V (2000) Symbiosis: an introduction to biological associations. Oxford University Press, New York

    Google Scholar 

  • Peled ON (1985) Survival of Saccharomyces cerevisiae Y5 during starvation in the presence of osmotic supports. Appl Environ Microb 50:713–716

    CAS  Google Scholar 

  • Pérez-Ortega S, De Los Ríos A, Crespo A, Sancho LG (2010) Symbiotic lifestyle and phylogenetic relationships of the bionts of Mastodia tessellata (Ascomycota, Incertae sedis). Am J Bot 97:738–752

    Article  PubMed  Google Scholar 

  • Rahway NJ (2006) The Merck index: an encyclopedia of chemicals, drugs, and biological. Merck, New York

    Google Scholar 

  • Rampelotto PH (2013) Extremophiles and extreme environments. Life 3:482–485

    Article  PubMed  PubMed Central  Google Scholar 

  • Reed RH (1986) Halotolerant and halophilic microbes. In: Herbert RA, Codd GA (eds) Microbes in extreme environments. Academic Press, London, pp 55–82

    Google Scholar 

  • Roser DJ, Melick DR, Ling HU, Seppelt RD (1992) Polyol and sugar content of terrestrial plants from continental Antarctica. Ant Sci 4:413–420

    Google Scholar 

  • Santarius KA (1992) Freezing of isolated thylakoid membranes in complex media. VIII. Differential cryoprotection by sucrose, proline and glycerol. Physiol Plantarum 84:87–93

    Article  CAS  Google Scholar 

  • Santiago IF, Soares MA, Rosa CA, Rosa LH (2015) Lichensphere: a protected natural microhabitat of the non-lichenized fungal communities living in extreme environments of Antarctica. Extremophiles 19:87–97

    Article  Google Scholar 

  • Smith VR, Gremmen NJM (2001) Photosynthesis in a sub-Antarctic shore-zone lichen. New Phytol 149:291–299

    Article  Google Scholar 

  • Węglarz W, Harańczyk H (2000) Two-dimensional analysis of the nuclear relaxation function in the time domain: the program CracSpin. J Phys D Appl Phys 33:1909–1920

    Article  Google Scholar 

Download references

Acknowledgements

The research was carried out with the equipment purchased thanks to the financial support of the European Regional Development Fund in the framework of the Polish Innovation Economy Operational Program (Contract No. POIG.02.01.00-12-023/08).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Bacior.

Additional information

Communicated by A. Oren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bacior, M., Nowak, P., Harańczyk, H. et al. Extreme dehydration observed in Antarctic Turgidosculum complicatulum and in Prasiola crispa . Extremophiles 21, 331–343 (2017). https://doi.org/10.1007/s00792-016-0905-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-016-0905-z

Keywords

Navigation