Skip to main content
Log in

A novel thermostable protein-tag: optimization of the Sulfolobus solfataricus DNA- alkyl-transferase by protein engineering

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

An Erratum to this article was published on 14 December 2015

Abstract

In the last decade, a powerful biotechnological tool for the in vivo and in vitro specific labeling of proteins (SNAP-tag technology) was proposed as a valid alternative to classical protein-tags (green fluorescent proteins, GFPs). This was made possible by the discovery of the irreversible reaction of the human alkylguanine-DNA-alkyl-transferase (hAGT) in the presence of benzyl-guanine derivatives. However, the mild reaction conditions and the general instability of the mesophilic SNAP-tag make this new approach not fully applicable to (hyper-)thermophilic and, in general, extremophilic organisms. Here, we introduce an engineered variant of the thermostable alkylguanine-DNA-alkyl-transferase from the Archaea Sulfolobus solfataricus (SsOGT-H5), which displays a catalytic efficiency comparable to the SNAP-tag protein, but showing high intrinsic stability typical of proteins from this organism. The successful heterologous expression obtained in a thermophilic model organism makes SsOGT-H5 a valid candidate as protein-tag for organisms living in extreme environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aliye N, Fabbretti A, Lupidi G, Tsekoa T, Spurio R (2015) Engineering color variants of green fluorescent protein (GFP) for thermostability, pH-sensitivity, and improved folding kinetics. Appl Microbiol Biotechnol 99:1205–1216

    Article  PubMed  CAS  Google Scholar 

  • Ashby MC, Ibaraki K, Henley JM (2004) It’s green outside: tracking cell surface proteins with pH-sensitive GFP. Trends Neurosci 27:257–261

    Article  PubMed  CAS  Google Scholar 

  • Campbell TN, Choy FYM (2000) The effect of ph on green fluorescent protein: a brief review. Mol Biol Today 2:1–4

    Google Scholar 

  • Cava F, Laptenko O, Borukhov S, Chahlafi Z, Blas-Galindo E, Gómez-Puertas P, Berenguer J (2007) Control of the respiratory metabolism of Thermus thermophilus by the nitrate respiration conjugative element NCE. Mol Microbiol 64:630–646

    Article  PubMed  CAS  Google Scholar 

  • Cava F, de Pedro MA, Blas-Galindo E, Waldo GS, Westblade LF, Berenguer J (2008) Expression and use of superfolder green fluorescent protein at high temperatures in vivo: a tool to study extreme thermophile biology. Environ Microbiol 10:605–613

    Article  PubMed  CAS  Google Scholar 

  • Cava F, Hidalgo A, Berenguer J (2009) Thermus thermophilus as biological model. Extremophiles 13:213–231

    Article  PubMed  CAS  Google Scholar 

  • Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC (1994) Green fluorescent protein as a marker for gene expression. Science 5148:802–805

    Article  Google Scholar 

  • Daniels DS, Mol CD, Arvai AS, Kanugula S, Pegg AE, Tainer JA (2000) Active and alkylated human AGT structures: a novel zinc site, inhibitor and extrahelical base binding. EMBO J 19:1719–1730

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Daniels DS, Woo TT, Luu KX, Noll DM, Clarke ND, Pegg AE, Tainer JA (2004) DNA binding and nucleotide flipping by the human DNA repair protein AGT. Nat Struct Mol Biol 11:714–720

    Article  PubMed  CAS  Google Scholar 

  • Fang Q, Kanugula S, Pegg AE (2005) Function of domains of human O 6-alkyl-guanine-DNA alkyltransferase. Biochemistry 44:15396–15405

    Article  PubMed  CAS  Google Scholar 

  • Gautier A, Juillerat A, Heinis C, Corrêa IR Jr, Kindermann M, Beaufils F, Johnsson K (2008) An engineered protein-tag for multiprotein labeling in living cells. Chem Biol 15:128–136

    Article  PubMed  CAS  Google Scholar 

  • Gronemeyer T, Chidley C, Juillerat A, Heinis C, Johnsson K (2006) Directed evolution of O 6-alkylguanine-DNA alkyltransferase for applications in protein labeling. Prot Eng Des Sel 19:309–316

    Article  CAS  Google Scholar 

  • Hinner MJ, Johnsson K (2010) How to obtain labeled proteins and what to do with them. Curr Opin Biotechnol 21:766–776

    Article  PubMed  CAS  Google Scholar 

  • Kanugula S, Goodtzova K, Edara S, Pegg AE (1995) Alteration of arginine-128 to alanine abolishes the ability of human O 6-alkylguanine-DNA alkyltransferase to repair methylated DNA but has no effect on its reaction with O 6-benzylguanine. Biochemistry 34:7113–7119

    Article  PubMed  CAS  Google Scholar 

  • Kanugula S, Goodtzova K, Pegg AE (1998) Probing of conformational changes in human O 6-alkylguanine-DNA alkyl transferase protein in its alkylated and DNA-bound states by limited proteolysis. Biochem J 329:545–550

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Keppler A, Gendreizig S, Gronemeyer T, Pick H, Vogel Johnsson K (2003) A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat Biotechnol 21:86–89

    Article  PubMed  CAS  Google Scholar 

  • Keppler A, Pick H, Arrivoli C, Vogel H, Johnsson K (2004) Labeling of fusion proteins with synthetic fluorophores in live cells. Proc Natl Acad Sci USA 10:9955–9959

    Article  Google Scholar 

  • Liu L, Watanabe K, Fang Q, Williams KM, Guengerich FP, Pegg AE (2007) Effect of alterations of key active site residues in O 6-alkylguanine-DNA alkyltransferase on its ability to modulate the genotoxicity of 1,2-dibromoethane. Chem Res Toxicol 20:155–163

    Article  PubMed  CAS  Google Scholar 

  • Miggiano R, Casazza V, Garavaglia S, Ciaramella M, Perugino G, Rizzi M, Rossi F (2013) Biochemical and structural studies of the Mycobacterium tuberculosis O 6-methylguanine methyltransferase and mutated variants. J Bacteriol 195:2728–2736

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Mollwitz B, Brunk E, Schmitt S, Pojer F, Bannwarth M, Schiltz M, Rothlisberger U, Johnsson K (2012) Directed evolution of the suicide protein O 6-alkylguanine-DNA alkyltransferase for increased reactivity results in an alkylated protein with exceptional stability. Biochemistry 51:986–994

    Article  PubMed  CAS  Google Scholar 

  • Moracci M, Capalbo L, Ciaramella M, Rossi M (1996) Identification of two glutamic acid residues essential for catalysis in the β-glycosidase from the thermoacidophilic archaeon Sulfolobus solfataricus. Protein Eng 12:1191–1195

    Article  Google Scholar 

  • Moracci M, Trincone A, Perugino G, Ciaramella M, Rossi M (1998) Restoration of the activity of active-site mutants of the hyperthermophilic beta-glycosidase from Sulfolobus solfataricus: dependence of the mechanism on the action of external nucleophiles. Biochemistry 37:17262–17270

    Article  PubMed  CAS  Google Scholar 

  • Morita R, Nakagawa N, Kuramitsu S, Masui R (2008) An O 6-methylguanine-DNA methyltransferase-like protein from Thermus thermophilus interacts with a nucleotide excision repair protein. J Biochem 144:267–277

    Article  PubMed  CAS  Google Scholar 

  • Niesen FH, Berglund H, Vedadi M (2007) The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability. Nat Protoc 2:2212–2221

    Article  PubMed  CAS  Google Scholar 

  • Pédelacq JD, Cabantous S, Tran T, Terwilliger TC, Waldo GS (2006) Engineering and characterization of a superfolder green fluorescent protein. Nature Biotech 24:79–88

    Article  Google Scholar 

  • Pegg AE (2011) Multifaceted roles of alkyltransferase and related proteins in DNA repair, DNA damage, resistance to chemotherapy, and research tools. Chem Res Toxicol 24:618–639

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Perugino G, Vettone V, Illiano G, Valenti A, Ferrara MC, Rossi M, Ciaramella M (2012) Activity and regulation of archaeal DNA alkyltransferase: conserved protein involved in repair of DNA alkylation damage. J Biol Chem 287:4222–4231

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Perugino G, Miggiano R, Serpe M, Vettone A, Valenti A, Lahiri S, Rossi F, Rossi M, Rizzi M, Ciaramella M (2015) Structure-function relationships governing activity and stability of a DNA alkylation damage repair thermostable protein. Nucl Ac Res. doi:10.1093/nar/gkv774

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, New York, pp 1.123–1.125

    Google Scholar 

  • Swarts DC, Jore MM, Westra ER, Zhu Y, Janssen JH, Snijders AP, Wang Y, Patel DJ, Berenguer J, Brouns SJJ, van der Oost J (2014) DNA-guided DNA interference by a prokaryotic Argonaute. Nature 507:258–261

    Article  PubMed  CAS  Google Scholar 

  • Tsien RY (1998) The green fluorescent protein. Annu Rev Biochem 67:509–544

    Article  PubMed  CAS  Google Scholar 

  • Tubbs JL, Pegg AE, Tainer JA (2007) DNA binding, nucleotide flipping, and the helix-turn-helix motif in base repair by O 6-alkylguanine-DNA alkyltransferase and its implications for cancer chemotherapy. DNA Repair 6:1100–1115

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wilkinson OJ, Latypov V, Tubbs JL, Millington CL, Morita R, Blackburn H, Marriott A, McGown G, Thorncroft M, Watson AJ, Connolly BA, Grasby JA, Masui R, Hunter CA, Tainer JA, Margison GP, Williams DM (2012) Alkyltransferase-like protein (Atl1) distinguishes alkylated guanines for DNA repair using cation–π interactions. Proc Natl Acad Sci 109:18755–18760

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yang CG, Garcia K, He C (2009) Damage detection and base flipping in direct DNA alkylation repair. ChemBioChem 10:417–423

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zang H, Fang Q, Pegg AE, Guengerich FP (2005) Kinetic analysis of steps in the repair of damaged DNA by human O 6-alkylguanine-DNA alkyltransferase. J Biol Chem 280:30873–30881

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully thank Castrese Morrone for help in some experiments. This work was supported by: (1) Short Term Mobility Program of the National Research Council of Italy; (2) FIRB-Futuro in Ricerca RBFR12OO1G_002-Nematic and Merit RBNE08YFN3-Molecular Oncology; (3) BIO2013-44953-R Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Perugino.

Additional information

Communicated by S. Albers.

A. Vettone and M. Serpe equally contributed to the present work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vettone, A., Serpe, M., Hidalgo, A. et al. A novel thermostable protein-tag: optimization of the Sulfolobus solfataricus DNA- alkyl-transferase by protein engineering. Extremophiles 20, 1–13 (2016). https://doi.org/10.1007/s00792-015-0791-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-015-0791-9

Keywords

Navigation