Skip to main content
Log in

Differential expression of particulate methane monooxygenase genes in the verrucomicrobial methanotroph ‘Methylacidiphilum kamchatkense’ Kam1

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

Methane monooxygenases (MMOs) are oxygen-dependent enzymes that catalyze the oxidation of methane to methanol in the methanotrophic bacteria. The thermoacidophilic verrucomicrobial methanotroph ‘Methylacidiphilum kamchatkense’ Kam1 contains three complete and phylogenetically distinct copies of the pmoCAB gene cluster apparently organized as operons, each encoding all three subunits of particulate MMO (pMMO), and a truncated pmoCA cluster encoding only two of the subunits. Two of the clusters are present as a tandem array, but the other clusters occur in isolation. Here, the expression of these clusters has been assessed using the four pmoA genes as targets in reverse transcriptase quantitative PCR analysis. One of the pmoA genes, designated pmoA2, is at least 35-fold more strongly transcribed than the other pmoA copies. Growth at suboptimal temperature and pH conditions did not significantly change the transcription pattern, indicating that the pmoCAB2 cluster encodes the functional pMMO under methane-fuelled growth conditions. During growth on methanol, expression of pmoA2 was reduced approximately tenfold as compared to growth on methane, suggesting a role for the alternative carbon substrates in gene regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Baani M, Liesack W (2008) Two isozymes of particulate methane monooxygenase with different methane oxidation kinetics are found in Methylocystis sp strain SC2. Proc Natl Acad Sci USA 105:10203–10208

    Article  PubMed  CAS  Google Scholar 

  • Bedard C, Knowles R (1989) Physiology, biochemistry, and specific inhibitors of CH4, NH4 +, and CO oxidation by methanotrophs and nitrifiers. Microbiol Rev 53:68–84

    PubMed  CAS  Google Scholar 

  • Colwell FS, Caldwell SL, Laidler JR, Brewer EA, Eberly JO, Sandborgh SC (2008) Anaerobic oxidation of methane: mechanisms, bioenergetics, and the ecology of associated microorganisms. Environ Sci Technol 42:6791–6799

    Article  PubMed  Google Scholar 

  • Dedysh SN, Panikov NS, Tiedje JM (1998) Acidophilic methanotrophic communities from Sphagnum peat bogs. Appl Environ Microbiol 64:922–929

    PubMed  CAS  Google Scholar 

  • Dedysh SN, Knief C, Dunfield PF (2005) Methylocella species are facultatively methanotrophic. J Bacteriol 187:4665–4670

    Article  PubMed  CAS  Google Scholar 

  • Dunfield PF, Yuryev A, Senin P, Smirnova AV, Stott MB, Hou SB, Ly B, Saw JH, Zhou ZM, Ren Y, Wang JM, Mountain BW, Crowe MA, Weatherby TM, Bodelier PLE, Liesack W, Feng L, Wang L, Alam M (2007) Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia. Nature 450:879–882

    Article  PubMed  CAS  Google Scholar 

  • Ettwig KF, Butler MK, Le Paslier D, Pelletier E, Mangenot S, Kuypers MMM, Schreiber F, Dutilh BE, Zedelius J, de Beer D, Gloerich J, Wessels HJCT, van Alen T, Luesken F, Wu ML, van de Pas-Schoonen KT, Op den Camp HJM, Janssen-Megens EM, Francoijs KJ, Stunnenberg H, Weissenbach J, Jetten MSM, Strous M (2010) Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464:543–548

    Article  PubMed  CAS  Google Scholar 

  • Geymonat E, Ferrando L, Tarlera SE (2011) Methylogaea oryzae gen. nov., sp nov., a mesophilic methanotroph isolated from a rice paddy field. Int J Syst Evol Microbiol 61:2568–2572

    Article  PubMed  Google Scholar 

  • Gilbert B, McDonald IR, Finch R, Stafford GP, Nielsen AK, Murrell JC (2000) Molecular analysis of the pmo (particulate methane monooxygenase) operons from two type II methanotrophs. Appl Environ Microbiol 66:966–975

    Article  PubMed  CAS  Google Scholar 

  • Hanson RS, Hanson TE (1996) Methanotrophic bacteria. Microbiol Rev 60:439–471

    PubMed  CAS  Google Scholar 

  • Hou S, Makarova KS, Saw JH, Senin P, Ly BV, Zhou Z, Ren Y, Wang J, Galperin MY, Omelchenko MV, Wolf YI, Yutin N, Koonin EV, Stott MB, Mountain BW, Crowe MA, Smirnova AV, Dunfield PF, Feng L, Wang L, Alam M (2008) Complete genome sequence of the extremely acidophilic methanotroph isolate V4, Methylacidiphilum infernorum, a representative of the bacterial phylum Verrucomicrobia. Biol Direct 3:1–25

    Article  Google Scholar 

  • Islam T, Jensen S, Reigstad LJ, Larsen Ø, Birkeland NK (2008) Methane oxidation at 55 °C and pH 2 by a thermoacidophilic bacterium belonging to the Verrucomicrobia phylum. Proc Natl Acad Sci USA 105:300–304

    Article  PubMed  CAS  Google Scholar 

  • Murrell JC, McDonald IR, Gilbert B (2000) Regulation of expression of methane monooxygenases by copper ions. Trends Microbiol 8:221–225

    Article  PubMed  CAS  Google Scholar 

  • Murrell JC, McDonald IR, Bodrossy L, Chen Y (2008) Molecular ecology techniques for the study of aerobic methanotrophs. Appl Environ Microbiol 74:1305–1315

    Article  PubMed  Google Scholar 

  • Nielsen AK, Gerdes K, Degn H, Murrell JC (1996) Regulation of bacterial methane oxidation: transcription of the soluble methane monooxygenase operon of Methylococcus capsulatus (Bath) is repressed by copper ions. Microbiology 142:1289–1296

    Article  PubMed  CAS  Google Scholar 

  • Op den Camp HJM, Islam T, Stott MB, Harhangi HR, Hynes A, Schouten S, Jetten MSM, Birkeland NK, Pol A, Dunfield PF (2009) Environmental, genomic and taxonomic perspectives on methanotrophic Verrucomicrobia. Environ Microbiol Rep 1:293–306

    Article  CAS  Google Scholar 

  • Pol A, Heijmans K, Harhangi HR, Tedesco D, Jetten MS, Op den Camp HJM (2007) Methanotrophy below pH 1 by a new Verrucomicrobia species. Nature 450:874–878

    Article  PubMed  CAS  Google Scholar 

  • Ricke P, Erkel C, Kube M, Reinhardt R, Liesack W (2004) Comparative analysis of the conventional and novel pmo (Particulate methane monooxygenase) operons from Methylocystis strain SC2. Appl Environ Microbiol 70:3055–3063

    Article  PubMed  CAS  Google Scholar 

  • Semrau JD, Chistoserdova A, Lebron J, Costello A, Davagnino J, Kenna E, Holmes AJ, Finch R, Murrell JC, Lidstrom al ME (1995) Particulate methane monooxygenase genes in methanotrophs. J Bacteriol 177:3071–3079

    PubMed  CAS  Google Scholar 

  • Semrau JD, DiSpirito AA, Yoon S (2010) Methanotrophs and copper. FEMS Microbiol Rev 34:496–531

    PubMed  CAS  Google Scholar 

  • Stoecker K, Bendinger B, Schoning B, Nielsen PH, Nielsen JL, Baranyi C, Toenshoff ER, Daims H, Wagner M (2006) Cohn’s Crenothrix is a filamentous methane oxidizer with an unusual methane monooxygenase. Proc Natl Acad Sci USA 103:2363–2367

    Article  PubMed  CAS  Google Scholar 

  • Stolyar S, Costello AM, Peeples TL, Lidstrom ME (1999) Role of multiple gene copies in particulate methane monooxygenase activity in the methane-oxidizing bacterium Methylococcus capsulatus Bath. Microbiology 145:1235–1244

    Article  PubMed  CAS  Google Scholar 

  • Stolyar S, Franke M, Lidstrom ME (2001) Expression of individual copies of Methylococcus capsulatus bath particulate methane monooxygenase genes. J Bacteriol 183:1810–1812

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed  CAS  Google Scholar 

  • Vorobev AV, Baani M, Doronina NV, Brady AL, Liesack W, Dunfield PF, Dedysh SN (2011) Methyloferula stellata gen. nov., sp nov., an acidophilic, obligately methanotrophic bacterium that possesses only a soluble methane monooxygenase. Int J Syst Evol Microbiol 61:2456–2463

    Article  PubMed  CAS  Google Scholar 

  • Whittenbury R, Phillips KC, Wilkinson JF (1970) Enrichment, isolation and some properties of methane-utilizing bacteria. J Gen Microbiol 61:205–218

    PubMed  CAS  Google Scholar 

  • Yimga MT, Dunfield PF, Ricke P, Heyer H, Liesack W (2003) Wide distribution of a novel pmoA-like gene copy among type II methanotrophs, and its expression in Methylocystis strain SC2. Appl Environ Microbiol 69:5593–5602

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Research Council of Norway (grant 204797), Statoil (grant 4501359564), the Norwegian Academy of Science and Statoil program (VISTA) (grant 6504), and Centre for Geobiology, University of Bergen (grant 802001). The excellent technical support of Staff Engineer Marit Steine Madsen is highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nils-Kåre Birkeland.

Additional information

Communicated by A. Driessen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erikstad, HA., Jensen, S., Keen, T.J. et al. Differential expression of particulate methane monooxygenase genes in the verrucomicrobial methanotroph ‘Methylacidiphilum kamchatkense’ Kam1. Extremophiles 16, 405–409 (2012). https://doi.org/10.1007/s00792-012-0439-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-012-0439-y

Keywords

Navigation