Skip to main content

Advertisement

Log in

Growth kinetics of haloalkaliphilic, sulfur-oxidizing bacterium Thioalkalivibrio versutus strain ALJ 15 in continuous culture

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

The chemolithoautotrophic, sulfur-oxidizing bacterium Thioalkalivibrio versutus strain ALJ 15, isolated from a soda lake in Kenya, was grown in a continuous culture, with thiosulfate or polysulfide as growth-limiting energy source and oxygen as electron acceptor, at pH 10 and at pH 0.6, 2 M and 4 M total sodium. The end product of the sulfur-compound oxidation was sulfate. Elemental sulfur and a cell-bound, polysulfide-like compound appeared as intermediates during substrate oxidation. In the thiosulfate-limited culture, the biomass yields and maximum specific growth rates decreased two and three times, respectively, with increasing sodium concentration. The apparent affinity constant measured for thiosulfate and polysulfide was in the micromolar range (K s=6±3 μM). The maintenance requirement (m s=8±5 mmol S2O3 2/g dry weight h−1) was in the range of values found for other autotrophic sulfur-oxidizing bacteria. The organism had a comparable maximum specific rate of oxygen uptake with thiosulfate, polysulfide, and sulfide, while elemental sulfur was oxidized at a lower rate. Glycine betaine was the main organic compatible solute. The respiration rates with different species of polysulfides (Sn 2−) were tested. All polysulfide species were completely oxidized at high rates to sulfate. Overall data demonstrated efficient growth and sulfur compounds oxidation of haloalkaliphilic chemolithoautotrophic bacteria from soda lakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Baumgarte S (2003) Microbial diversity of soda lake habitats. PhD thesis, Carolo-Wilhelmina University, Braunschweig, p 197

  • Chen KY, Gupta SK (1973) Formation of polysulfides in aqueous solution. Environ Lett 4:187–200

    CAS  PubMed  Google Scholar 

  • Duckworth AW, Grant WD, Jones BE, van Steenbergen R (1996) Phylogenetic diversity of soda lakes alkaliphiles. FEMS Microbiol Ecol 19:181–191

    Google Scholar 

  • Galinski EA (1995) Osmoadaptation in bacteria. Adv Microb Physiol 37:272–328

    CAS  PubMed  Google Scholar 

  • Galinski EA, Herzog RM (1990) The role of trehalose as a substitute for nitrogen-containing compatible solutes (Ectothiorhodospira halochloris). Arch Microbiol 153:607–613

    CAS  Google Scholar 

  • Giggenbach WF (1972) Optical spectra and equilibrium distribution of polysulfide ions in aqueous solution at 20°. Inorg Chem 11:1201–1207

    CAS  Google Scholar 

  • Giggenbach WF (1974) Equilibria involving polysulfide ions in aqueous sulfide solutions up to 240°. Inorg Chem 13:1724–1730

    CAS  Google Scholar 

  • Ginzburg B, Dor I, Chalifa I, Hadas O, Lev O (1999) Formation of dimethyloligosulfides in Lake Kinneret: biogenic formation of inorganic oligosulfide intermediates under oxic conditions. Environ Sci Technol 33:571–579

    Article  CAS  Google Scholar 

  • Gorlenko VM, Namsaraev BB, Kulyrova AV, Zavarzina DG, Zhilina TN (1999) The activity of sulfate-reducing bacteria in bottom sediments of soda lakes of the southeastern Transbaikal region. Microbiology (Moscow) 68:664–670

    Google Scholar 

  • Grant WD, Tindall BJ (1986) The alkaline saline environment. In: Herbert RA, Codd GA (eds) Microbes in extreme environments. Academic, London, pp 25–54

  • Gun J, Goifman A, Shkrob I, Kamyshny A, Ginzburg B, Hadas O, Dor I, Modestov AD, Lev O (2000) Formation of polysulfides in an oxygen-rich freshwater lake and their role in the production of volatile sulfur compounds in aquatic systems. Environ Sci Technol 34:4741–4746

    Article  CAS  Google Scholar 

  • Hazeu W, Bijleveld W, Grotenhuis JT, Kakes E, Kuenen JG (1986) Kinetics and energetics of reduced sulfur oxidation by chemostat cultures of Thiobacillus ferrooxidans. Arch Microbiol 52:507–518

    CAS  Google Scholar 

  • Hazeu W, Batenburg-van der Vegte WH, Bos P, Van der Pas RK, Kuenen JG (1988) The production and utilization of intermediary elemental sulfur during the oxidation of reduced sulfur-compounds by Thiobacillus ferrooxidans. Arch Microbiol 150:574–579

    CAS  Google Scholar 

  • Heijnen JJ, van Dijken JP (1992) In search of a thermodynamic description of biomass yields for the chemotrophic growth of microorganisms. Biotechnol Bioeng 39:833–858

    CAS  Google Scholar 

  • Humayoun SB, Bano N, Hollibaugh JT (2003) Depth distribution of microbial diversity in Mono Lake, a meromictic soda lake in California. Appl Environ Microbiol 69:1030–1042

    Article  CAS  PubMed  Google Scholar 

  • Jones BE, Grant WD, Duckworth AW, Owenson GG (1998) Microbial diversity of soda lakes. Extremophiles 2:191–200

    Article  CAS  PubMed  Google Scholar 

  • Kelly DP (1999) Thermodynamic aspects of energy conservation by chemolithotrophic sulfur bacteria in relation to the sulfur oxidation pathways. Arch Microbiol 171:219–229

    Article  CAS  Google Scholar 

  • Kelly DP, Chambers LA, Trudinger PA (1969) Cyanolysis and spectrophotometric estimation of trithionate in mixture with thiosulfate and tetrathionate. Anal Chem 41:898–901

    CAS  Google Scholar 

  • Kolmert A, Wikstrom P, Hallberg KB (2000) A fast and simple turbidimetric method for the determination of sulfate in sulfate-reducing bacterial cultures. J Microbiol Methods 41:179–184

    Article  CAS  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin-phenol reagents. J Biol Chem 193:265–275

    CAS  Google Scholar 

  • Ma Y, Zhang W, Xue Y, Zhou P, Ventosa A, Grant WD (2003) Bacterial diversity of the Inner Mongolian Baer Soda Lake as revealed by 16S rRNA gene sequence analyses. Extremophiles 8:45–51, DOI 10.1007/s00792-003-0358-z

    Google Scholar 

  • Mason J, Kelly DP, Wood AP (1987) Chemolithotrophic and autotrophic growth of Thermothrix thiopara and some thiobacilli on thiosulphate and polythionates and a reassessment of the growth yields of Thx. thiopara in chemostat culture. J Gen Microbiol 133:1249–1256

    CAS  Google Scholar 

  • Moriarty DJ, Nicholas DJ (1970a) Products of sulphide oxidation in extracts of Thiobacillus concretivorus. Biochim Biophys Acta 197:143–151

    Article  CAS  PubMed  Google Scholar 

  • Moriarty DJ, Nicholas DJ (1970b) Electron transfer during sulphide and sulphite oxidation by Thiobacillus concretivorus. Biochim Biophys Acta 216:130–138

    Article  CAS  PubMed  Google Scholar 

  • Oren A (1999) Bioenergetic aspects of halophilism. Microbiol Mol Biol Rev 63:334–348

    CAS  PubMed  Google Scholar 

  • Oren A (2002) Halophilic microorganisms and their environments. Kluwer, Dordrecht, The Netherlands

  • Pfennig N, Lippert KD (1966) Über das Vitamin B12-Bedürfnis phototropher Schwefelbacterien. Arch Microbiol 55:245–256

    CAS  Google Scholar 

  • Rees HC, Grant WD, Jones BE, Heaphy S (2003) Diversity of Kenyan soda lake alkaliphiles assessed by molecular methods. Extremophiles DOI 10.1007/s00792-003-0361-4

  • Sievert SM, Heidorn T, Kuever J (2000) Halothiobacillus kellyi sp. nov., a mesophilic, obligately chemolithoautotrophic, sulfur-oxidizing bacterium isolated from a shallow-water hydrothermal vent in the Aegean Sea, and emended description of the genus Halothiobacillus. Int J Syst Evol Microbiol 50:1229–1237

    CAS  PubMed  Google Scholar 

  • Sörbo B (1957) A colorimetric determination of thiosulfate. Biochim Biophys Acta 23:412–416

    Article  PubMed  Google Scholar 

  • Sorokin DY, Lysenko AM, Mityushina LL (1996) Isolation and characterization of alkaliphilic heterotrophic bacteria capable of oxidation of inorganic sulfur compounds to tetrathionate. Microbiology (Moscow) 65:370–383

    Google Scholar 

  • Sorokin DY, Robertson LA, Kuenen JG (2000) Isolation and characterization of alkaliphilic, chemolithoautotrophic, sulphur-oxidizing bacteria. Antonie van Leeuwenhoek 77:251–262

    CAS  Google Scholar 

  • Sorokin DY, Lysenko AM, Mityushina LL, Tourova TP, Jones BE, Rainey FA, Robertson LA, Kuenen JG (2001a) Thioalkalimicrobium aerophilum gen. nov., sp. nov. and Thioalkalimicrobium sibericum sp. nov., and Thioalkalivibrio versutus gen. nov., sp. nov., Thioalkalivibrio nitratis sp. nov., novel and Thioalkalivibrio denitrificans sp. nov., novel obligately alkaliphilic and obligately chemolithoautotrophic sulfur-oxidizing bacteria from soda lakes. Int J Syst Evol Microbiol 51:565–580

    CAS  PubMed  Google Scholar 

  • Sorokin DY, Tourova T, Schmid MC, Wagner M, Koops HP, Kuenen JG, Jetten M (2001b) Isolation and properties of obligately chemolithoautotrophic and extremely alkali-tolerant ammonia-oxidizing bacteria from Mongolian soda lakes. Arch Microbiol 176:170–177

    CAS  PubMed  Google Scholar 

  • Sorokin DY, Banciu H, van Loosdrecht MCM, Kuenen JG (2003) Growth physiology and competitive interaction of obligately chemolithoautotrophic, haloalkaliphilic, sulfur-oxidizing bacteria from soda lakes. Extremophiles 7:195–203

    PubMed  Google Scholar 

  • Stefess GC (1993) Oxidation of sulphide to elemental sulphur by aerobic thiobacilli. PhD thesis, Delft University of Technology, p 128

  • Steudel R, Holdt G, Nagorka R (1986) On the autooxidation of aqueous sodium polysulfide. Z Naturforsch 41b:1519–1522

    CAS  Google Scholar 

  • Teder A (1967) Spectrophotometric determination of polysulfide excess sulfur in aqueous solutions. Sven Papperstidn 70:197–200

    CAS  Google Scholar 

  • Then J, Trüper HG (1983) Sulfide oxidation in Ectothiorhodospira abdelmakeii. Evidence for the catalytic role of cytochrome c-551. Arch Microbiol 135:254–258

    CAS  Google Scholar 

  • Trüper HG, Schlegel HG (1964) Sulfur metabolism in Thiorhodaceae. Quantitative measurements on growing cells of Chromatium okenii. Antonie van Leeuwenhoek 30:225–238

    PubMed  Google Scholar 

  • Visser JM (1997) Sulfur compound oxidation and sulfur production by Thiobacillus sp. W5. PhD thesis, Delft University of Technology, p 107

  • Wood AP, Kelly DP (1986) Chemolithotrophic metabolism of the newly-isolated moderately thermophilic, obligately autotrophic Thiobacillus tepidarius. Arch Microbiol 144:71–77

    CAS  Google Scholar 

  • Wood AP, Kelly DP (1988) Isolation and characterisation of Thiobacillus aquaesulis sp. nov., a novel facultatively autotrophic moderate thermophile. Arch Microbiol 149:339–343

    CAS  Google Scholar 

  • Wood AP, Kelly DP (1989) Isolation and physiological characterisation of Thiobacillus thyasiris sp. nov., a novel marine facultative autotroph and the putative symbiont of Thyasirae flexuosa. Arch Microbiol 152:160–166

    CAS  Google Scholar 

  • Wood AP, Kelly DP (1991) Isolation and characterisation of Thiobacillus halophilus sp. nov., a sulphur-oxidising autotrophic eubacterium from a Western Australian hypersaline lake. Arch Microbiol 156:277–280

    CAS  Google Scholar 

  • Zavarzin GA, Zhilina TN, Kevbrin VV (1999) The alkaliphilic microbial community and its functional diversity. Microbiology (Moscow) 68:579–599

Download references

Acknowledgements

This work was financially supported by the Dutch Technology Foundation (STW) projects DST.4653 and WCB.5939.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Horia Banciu.

Additional information

Communicated by W.D. Grant

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banciu, H., Sorokin, D.Y., Kleerebezem, R. et al. Growth kinetics of haloalkaliphilic, sulfur-oxidizing bacterium Thioalkalivibrio versutus strain ALJ 15 in continuous culture. Extremophiles 8, 185–192 (2004). https://doi.org/10.1007/s00792-004-0376-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-004-0376-5

Keywords

Navigation