Skip to main content
Log in

Finite elements for scalar convection-dominated equations and incompressible flow problems: a never ending story?

  • Special Issue FEM Symposium 2017
  • Published:
Computing and Visualization in Science

Abstract

The contents of this paper is twofold. First, important recent results concerning finite element methods for convection-dominated problems and incompressible flow problems are described that illustrate the activities in these topics. Second, a number of, in our opinion, important open problems in these fields are discussed. The exposition concentrates on \(H^1\)-conforming finite elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Acosta, G., Durán, R.G.: The maximum angle condition for mixed and nonconforming elements: application to the Stokes equations. SIAM J. Numer. Anal. 37(1), 18–36 (1999)

    MathSciNet  MATH  Google Scholar 

  2. Ahmed, N., Bartsch, C., John, V., Wilbrandt, U.: An Assessment of Some Solvers for Saddle Point Problems Emerging from the Incompressible Navier–Stokes Equations. Comput. Methods Appl. Mech. Eng. 331, 492–513 (2018)

    MathSciNet  Google Scholar 

  3. Ainsworth, M., Barrenechea, G.R., Wachtel, A.: Stabilization of high aspect ratio mixed finite elements for incompressible flow. SIAM J. Numer. Anal. 53(2), 1107–1120 (2015)

    MathSciNet  MATH  Google Scholar 

  4. Ainsworth, M., Coggins, P.: The stability of mixed \(hp\)-finite element methods for Stokes flow on high aspect ratio elements. SIAM J. Numer. Anal. 38(5), 1721–1761 (2000)

    MathSciNet  MATH  Google Scholar 

  5. Allendes, A., Durán, F., Rankin, R.: Error estimation for low-order adaptive finite element approximations for fluid flow problems. IMA J. Numer. Anal. 36(4), 1715–1747 (2016)

    MathSciNet  MATH  Google Scholar 

  6. Apel, T., Knopp, T., Lube, G.: Stabilized finite element methods with anisotropic mesh refinement for the Oseen problem. Appl. Numer. Math. 58(12), 1830–1843 (2008)

    MathSciNet  MATH  Google Scholar 

  7. Apel, T., Randrianarivony, H.M.: Stability of discretizations of the Stokes problem on anisotropic meshes. Math. Comput. Simul. 61(3–6), 437–447 (2003)

    MathSciNet  MATH  Google Scholar 

  8. Apel, T., Matthies, G.: Nonconforming, anisotropic, rectangular finite elements of arbitrary order for the Stokes problem. SIAM J. Numer. Anal. 46(4), 1867–1891 (2008)

    MathSciNet  MATH  Google Scholar 

  9. Apel, T., Nicaise, S.: The inf-sup condition for low order elements on anisotropic meshes. Calcolo 41(2), 89–113 (2004)

    MathSciNet  MATH  Google Scholar 

  10. Apel, T., Nicaise, S., Schöberl, J.: A non-conforming finite element method with anisotropic mesh grading for the Stokes problem in domains with edges. IMA J. Numer. Anal. 21(4), 843–856 (2001)

    MathSciNet  MATH  Google Scholar 

  11. Arminjon, P., Dervieux, A.: Construction of TVD-like artificial viscosities on two-dimensional arbitrary FEM grids. J. Comput. Phys. 106(1), 176–198 (1993)

    MathSciNet  MATH  Google Scholar 

  12. Arndt, D., Dallmann, H., Lube, G.: Local projection FEM stabilization for the time-dependent incompressible Navier–Stokes problem. Numer. Methods Part. Differ. Equ. 31(4), 1224–1250 (2015)

    MathSciNet  MATH  Google Scholar 

  13. Augustin, M., Caiazzo, A., Fiebach, A., Fuhrmann, J., John, V., Linke, A., Umla, R.: An assessment of discretizations for convection-dominated convection–diffusion equations. Comput. Methods Appl. Mech. Eng. 200(47–48), 3395–3409 (2011)

    MathSciNet  MATH  Google Scholar 

  14. Babuška, I.: Error-bounds for finite element method. Numer. Math. 16, 322–333 (1971)

    MathSciNet  MATH  Google Scholar 

  15. Bardos, C.W., Titi, E.S.: Mathematics and turbulence: where do we stand? J. Turbul. 14(3), 42–76 (2013)

    MathSciNet  Google Scholar 

  16. Barrenechea, G.R., John, V., Knobloch, P.: A local projection stabilization finite element method with nonlinear crosswind diffusion for convection–diffusion–reaction equations. ESAIM Math. Model. Numer. Anal. 47(5), 1335–1366 (2013)

    MathSciNet  MATH  Google Scholar 

  17. Barrenechea, G.R., John, V., Knobloch, P.: Some analytical results for an algebraic flux correction scheme for a steady convection–diffusion equation in one dimension. IMA J. Numer. Anal. 35(4), 1729–1756 (2015)

    MathSciNet  MATH  Google Scholar 

  18. Barrenechea, G.R., John, V., Knobloch, P.: Analysis of algebraic flux correction schemes. SIAM J. Numer. Anal. 54(4), 2427–2451 (2016)

    MathSciNet  MATH  Google Scholar 

  19. Barrenechea, G.R., John, V., Knobloch, P.: An algebraic flux correction scheme satisfying the discrete maximum principle and linearity preservation on general meshes. Math. Models Methods Appl. Sci. 27(3), 525–548 (2017)

    MathSciNet  MATH  Google Scholar 

  20. Barrenechea, G.R., Valentin, F.: Consistent local projection stabilized finite element methods. SIAM J. Numer. Anal. 48(5), 1801–1825 (2010)

    MathSciNet  MATH  Google Scholar 

  21. Barrenechea, G.R., Valentin, F.: A residual local projection method for the Oseen equation. Comput. Methods Appl. Mech. Eng. 199(29–32), 1906–1921 (2010)

    MathSciNet  MATH  Google Scholar 

  22. Barrenechea, G.R., Valentin, F.: Beyond pressure stabilization: a low-order local projection method for the Oseen equation. Int. J. Numer. Methods Eng. 86(7), 801–815 (2011)

    MathSciNet  MATH  Google Scholar 

  23. Barrios, T.P., Cascón, J.M., González, M.: Augmented mixed finite element method for the Oseen problem: a priori and a posteriori error analyses. Comput. Methods Appl. Mech. Eng. 313, 216–238 (2017)

    MathSciNet  Google Scholar 

  24. Bazilevs, Y., Beirão da Veiga, L., Cottrell, J.A., Hughes, T.J.R., Sangalli, G.: Isogeometric analysis: approximation, stability and error estimates for \(h\)-refined meshes. Math. Models Methods Appl. Sci. 16(7), 1031–1090 (2006)

    MathSciNet  MATH  Google Scholar 

  25. Bazilevs, Y., Calo, V.M., Tezduyar, T.E., Hughes, T.J.R.: \(YZ\beta \) discontinuity capturing for advection-dominated processes with application to arterial drug delivery. Int. J. Numer. Methods Fluids 54(6–8), 593–608 (2007)

    MathSciNet  MATH  Google Scholar 

  26. Becker, R., Braack, M.: A finite element pressure gradient stabilization for the Stokes equations based on local projections. Calcolo 38(4), 173–199 (2001)

    MathSciNet  MATH  Google Scholar 

  27. Becker, R., Braack, M.: A two-level stabilization scheme for the Navier–Stokes equations. In: Feistauer, M., Dolejší, V., Knobloch, P., Najzar, K. (eds.) Numerical Mathematics and Advanced Applications, pp. 123–130. Springer, Berlin (2004)

    Google Scholar 

  28. Benzi, M., Olshanskii, M.A.: An augmented Lagrangian-based approach to the Oseen problem. SIAM J. Sci. Comput. 28(6), 2095–2113 (2006)

    MathSciNet  MATH  Google Scholar 

  29. Benzi, M., Wang, Z.: Analysis of augmented Lagrangian-based preconditioners for the steady incompressible Navier–Stokes equations. SIAM J. Sci. Comput. 33(5), 2761–2784 (2011)

    MathSciNet  MATH  Google Scholar 

  30. Berrone, S.: Robustness in a posteriori error analysis for FEM flow models. Numer. Math. 91(3), 389–422 (2002)

    MathSciNet  MATH  Google Scholar 

  31. Bochev, P., Gunzburger, M.: An absolutely stable pressure-Poisson stabilized finite element method for the Stokes equations. SIAM J. Numer. Anal. 42(3), 1189–1207 (2004)

    MathSciNet  MATH  Google Scholar 

  32. Boris, J.P., Book, D.L.: Flux-corrected transport. I. SHASTA, a fluid transport algorithm that works. J. Comput. Phys. 11(1), 38–69 (1973)

    MATH  Google Scholar 

  33. Braack, M.: A stabilized finite element scheme for the Navier-Stokes equations on quadrilateral anisotropic meshes. M2AN. Math. Model. Numer. Anal. 42(6), 903–924 (2008)

    MathSciNet  MATH  Google Scholar 

  34. Braack, M., Burman, E., Taschenberger, N.: Duality based a posteriori error estimation for quasi-periodic solutions using time averages. SIAM J. Sci. Comput. 33(5), 2199–2216 (2011)

    MathSciNet  MATH  Google Scholar 

  35. Braack, M., Lube, G., Röhe, L.: Divergence preserving interpolation on anisotropic quadrilateral meshes. Comput. Methods Appl. Math. 12(2), 123–138 (2012)

    MathSciNet  MATH  Google Scholar 

  36. Braack, M., Mucha, P.B.: Directional do-nothing condition for the Navier-Stokes equations. J. Comput. Math. 32(5), 507–521 (2014)

    MathSciNet  MATH  Google Scholar 

  37. Brennecke, C., Linke, A., Merdon, C., Schöberl, J.: Optimal and pressure-independent \(L^2\) velocity error estimates for a modified Crouzeix–Raviart Stokes element with BDM reconstructions. J. Comput. Math. 33(2), 191–208 (2015)

    MathSciNet  MATH  Google Scholar 

  38. Brezzi, F.: On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers. Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge 8(R–2), 129–151 (1974)

    MathSciNet  MATH  Google Scholar 

  39. Brezzi, F., Fortin, M.: A minimal stabilisation procedure for mixed finite element methods. Numer. Math. 89(3), 457–491 (2001)

    MathSciNet  MATH  Google Scholar 

  40. Brezzi, F., Pitkäranta, J.: On the stabilization of finite element approximations of the Stokes equations. In: Efficient Solutions of Elliptic Systems (Kiel, 1984), Volume 10 of Notes Numer. Fluid Mech., pp. 11–19. Friedr. Vieweg, Braunschweig (1984)

  41. Brooks, A.N., Hughes, T.J.R.: Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 32(1–3), 199–259 (1982)

    MathSciNet  MATH  Google Scholar 

  42. Buffa, A., de Falco, C., Sangalli, G.: IsoGeometric analysis: stable elements for the 2D Stokes equation. Int. J. Numer. Methods Fluids 65(11–12), 1407–1422 (2011)

    MathSciNet  MATH  Google Scholar 

  43. Bulling, J., John, V., Knobloch, P.: Isogeometric analysis for flows around a cylinder. Appl. Math. Lett. 63, 65–70 (2017)

    MathSciNet  MATH  Google Scholar 

  44. Burman, E.: A posteriori error estimation for interior penalty finite element approximations of the advection–reaction equation. SIAM J. Numer. Anal. 47(5), 3584–3607 (2009)

    MathSciNet  MATH  Google Scholar 

  45. Burman, E.: Robust error estimates for stabilized finite element approximations of the two dimensional Navier–Stokes’ equations at high Reynolds number. Comput. Methods Appl. Mech. Eng. 288, 2–23 (2015)

    MathSciNet  MATH  Google Scholar 

  46. Burman, E., Ern, A.: Stabilized Galerkin approximation of convection–diffusion–reaction equations: discrete maximum principle and convergence. Math. Comput. 74(252), 1637–1652 (2005). (electronic)

    MathSciNet  MATH  Google Scholar 

  47. Burman, E., Ern, A., Fernández, M.A.: Fractional-step methods and finite elements with symmetric stabilization for the transient Oseen problem. ESAIM: M2AN 51(2), 487–507 (2017)

    MathSciNet  MATH  Google Scholar 

  48. Burman, E., Fernández, M.A.: Continuous interior penalty finite element method for the time-dependent Navier–Stokes equations: space discretization and convergence. Numer. Math. 107(1), 39–77 (2007)

    MathSciNet  MATH  Google Scholar 

  49. Burman, E., Guzmán, J., Leykekhman, D.: Weighted error estimates of the continuous interior penalty method for singularly perturbed problems. IMA J. Numer. Anal. 29(2), 284–314 (2009)

    MathSciNet  MATH  Google Scholar 

  50. Burman, E., Hansbo, P.: Edge stabilization for Galerkin approximations of convection–diffusion–reaction problems. Comput. Methods Appl. Mech. Eng. 193(15–16), 1437–1453 (2004)

    MathSciNet  MATH  Google Scholar 

  51. Burman, E., Hansbo, P.: Edge stabilization for the generalized Stokes problem: a continuous interior penalty method. Comput. Methods Appl. Mech. Eng. 195(19–22), 2393–2410 (2006)

    MathSciNet  MATH  Google Scholar 

  52. Burman, E., Santos, I.P.: Error estimates for transport problems with high Péclet number using a continuous dependence assumption. J. Comput. Appl. Math. 309, 267–286 (2017)

    MathSciNet  MATH  Google Scholar 

  53. Charnyi, S., Heister, T., Olshanskii, M.A., Rebholz, L.G.: On conservation laws of Navier–Stokes Galerkin discretizations. J. Comput. Phys. 337, 289–308 (2017)

    MathSciNet  Google Scholar 

  54. Chen, H.: Pointwise error estimates for finite element solutions of the Stokes problem. SIAM J. Numer. Anal. 44(1), 1–28 (2006)

    MathSciNet  MATH  Google Scholar 

  55. Chizhonkov, E.V., Olshanskii, M.A.: On the domain geometry dependence of the LBB condition. M2AN Math. Model. Numer. Anal. 34(5), 935–951 (2000)

    MathSciNet  MATH  Google Scholar 

  56. Codina, R., Blasco, J.: A finite element formulation for the Stokes problem allowing equal velocity–pressure interpolation. Comput. Methods Appl. Mech. Eng. 143(3–4), 373–391 (1997)

    MathSciNet  MATH  Google Scholar 

  57. Crouzeix, M., Raviart, P.-A.: Conforming and nonconforming finite element methods for solving the stationary Stokes equations. I. Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge 7(R–3), 33–75 (1973)

    MathSciNet  MATH  Google Scholar 

  58. Dallmann, H., Arndt, D.: Stabilized finite element methods for the Oberbeck–Boussinesq model. J. Sci. Comput. 69(1), 244–273 (2016)

    MathSciNet  MATH  Google Scholar 

  59. de Frutos, J., García-Archilla, B., John, V., Novo, J.: An adaptive SUPG method for evolutionary convection–diffusion equations. Comput. Methods Appl. Mech. Eng. 273, 219–237 (2014)

    MathSciNet  MATH  Google Scholar 

  60. de Frutos, J., García-Archilla, B., John, V., Novo, J.: Analysis of the grad-div stabilization for the time-dependent Navier-Stokes equations with inf-sup stable finite elements. Adv. Comput. Math. 44, 195–225 (2018)

    MathSciNet  MATH  Google Scholar 

  61. de Frutos, J., García-Archilla, B., John, V., Novo, J.: Error Analysis of Non Inf-sup Stable Discretizations of the time-dependent Navier–Stokes equations with Local Projection Stabilization. Technical Report arXiv:1709.01011 (2017)

  62. de Frutos, J., García-Archilla, B., Novo, J.: Local error estimates for the SUPG method applied to evolutionary convection–reaction–diffusion equations. J. Sci. Comput. 66(2), 528–554 (2016)

    MathSciNet  MATH  Google Scholar 

  63. Dohrmann, C.R., Bochev, P.B.: A stabilized finite element method for the Stokes problem based on polynomial pressure projections. Int. J. Numer. Methods Fluids 46(2), 183–201 (2004)

    MathSciNet  MATH  Google Scholar 

  64. Douglas Jr., J., Wang, J.P.: An absolutely stabilized finite element method for the Stokes problem. Math. Comput. 52(186), 495–508 (1989)

    MathSciNet  MATH  Google Scholar 

  65. Du, S., Zhang, Z.: A robust residual-type a posteriori error estimator for convection–diffusion equations. J. Sci. Comput. 65(1), 138–170 (2015)

    MathSciNet  MATH  Google Scholar 

  66. Durango, F., Novo, J.: Two-grid mixed finite-element approximations to the Navier-Stokes equations based on a Newton type-step. J. Sci. Comput. 74, 456–473 (2018)

    MathSciNet  MATH  Google Scholar 

  67. Eigel, M., Merdon, C.: Equilibration a posteriori error estimation for convection–diffusion–reaction problems. J. Sci. Comput. 67(2), 747–768 (2016)

    MathSciNet  MATH  Google Scholar 

  68. Elman, H., Howle, V.E., Shadid, J., Shuttleworth, R., Tuminaro, R.: Block preconditioners based on approximate commutators. SIAM J. Sci. Comput. 27(5), 1651–1668 (2006)

    MathSciNet  MATH  Google Scholar 

  69. Elman, H.C., Silvester, D.J., Wathen, A.J.: Finite Elements and Fast Iterative Solvers: With Applications in Incompressible Fluid Dynamics, 2nd edn. Oxford University Press, Oxford (2014). Numerical Mathematics and Scientific Computation

    MATH  Google Scholar 

  70. Evans, J.A., Hughes, T.J.R.: Isogeometric divergence-conforming B-splines for the steady Navier–Stokes equations. Math. Models Methods Appl. Sci. 23(8), 1421–1478 (2013)

    MathSciNet  MATH  Google Scholar 

  71. Evans, J.A., Hughes, T.J.R.: Isogeometric divergence-conforming B-splines for the unsteady Navier–Stokes equations. J. Comput. Phys 241, 141–167 (2013)

    MathSciNet  MATH  Google Scholar 

  72. Falk, R.S., Neilan, M.: Stokes complexes and the construction of stable finite elements with pointwise mass conservation. SIAM J. Numer. Anal. 51(2), 1308–1326 (2013)

    MathSciNet  MATH  Google Scholar 

  73. Girault, V., Nochetto, R.H., Scott, L.R.: Max-norm estimates for Stokes and Navier–Stokes approximations in convex polyhedra. Numer. Math. 131(4), 771–822 (2015)

    MathSciNet  MATH  Google Scholar 

  74. Girault, V., Raviart, P.-A.: Finite Element Approximation of the Navier–Stokes Equations, Volume 749 of Lecture Notes in Mathematics. Springer, Berlin (1979)

    Google Scholar 

  75. Girault, V., Raviart, P.-A.: Finite element methods for Navier-Stokes equations. Theory and algorithms. In: Volume 5 of Springer Series in Computational Mathematics. Springer, Berlin (1986)

  76. Girault, V., Scott, L.R.: A quasi-local interpolation operator preserving the discrete divergence. Calcolo 40(1), 1–19 (2003)

    MathSciNet  MATH  Google Scholar 

  77. Glowinski, R.: Finite element methods for incompressible viscous flow. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis, vol. IX, pp. 3–1176. North-Holland, Amsterdam (2003)

    Google Scholar 

  78. Godunov, S.K.: A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics. Mat. Sb. (N.S.) 47(89), 271–306 (1959)

    MathSciNet  MATH  Google Scholar 

  79. Guzmán, J., Leykekhman, D.: Pointwise error estimates of finite element approximations to the Stokes problem on convex polyhedra. Math. Comput. 81(280), 1879–1902 (2012)

    MathSciNet  MATH  Google Scholar 

  80. Guzmán, J., Neilan, M.: Conforming and divergence-free Stokes elements on general triangular meshes. Math. Comput. 83(285), 15–36 (2014)

    MathSciNet  MATH  Google Scholar 

  81. Guzmán, J., Sánchez, M.A.: Max-norm stability of low order Taylor–Hood elements in three dimensions. J. Sci. Comput. 65(2), 598–621 (2015)

    MathSciNet  MATH  Google Scholar 

  82. Hauke, G., Doweidar, M.H., Fuster, D.: A posteriori error estimation for computational fluid dynamics: the variational multiscale approach. In: de Borst R., Ramm E. (eds) Multiscale Methods in Computational Mechanics, Lecture Notes in Applied and Computational Mechanics, vol. 55. Springer, Dordrecht (2010)

  83. Hauke, G., Doweidar, M.H., Fuster, D., Gómez, A., Sayas, J.: Application of variational a-posteriori multiscale error estimation to higher-order elements. Comput. Mech. 38(4–5), 356–389 (2006)

    MathSciNet  MATH  Google Scholar 

  84. Hauke, G., Fuster, D., Doweidar, M.H.: Variational multiscale a-posteriori error estimation for multi-dimensional transport problems. Comput. Methods Appl. Mech. Eng. 197(33–40), 2701–2718 (2008)

    MathSciNet  MATH  Google Scholar 

  85. Hosseini, B.S., Möller, M., Turek, S.: Isogeometric analysis of the Navier–Stokes equations with Taylor–Hood B-spline elements. Appl. Math. Comput. 267, 264–281 (2015)

    MathSciNet  MATH  Google Scholar 

  86. Hughes, T.J.R., Cottrell, J.A., Bazilevs, Y.: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 194(39–41), 4135–4195 (2005)

    MathSciNet  MATH  Google Scholar 

  87. Hughes, T.J.R.: Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods. Comput. Methods Appl. Mech. Eng. 127(1–4), 387–401 (1995)

    MathSciNet  MATH  Google Scholar 

  88. Hughes, T.J.R., Brooks, A.: A multidimensional upwind scheme with no crosswind diffusion. In: Finite Element Methods for Convection Dominated Flows (Papers, Winter Ann. Meeting Amer. Soc. Mech. Engrs., New York, 1979), Volume 34 of AMD, pp. 19–35. Amer. Soc. Mech. Engrs. (ASME), New York (1979)

  89. Hughes, T.J.R., Franca, L.P.: A new finite element formulation for computational fluid dynamics. VII. The Stokes problem with various well-posed boundary conditions: symmetric formulations that converge for all velocity/pressure spaces. Comput. Methods Appl. Mech. Eng. 65(1), 85–96 (1987)

    MathSciNet  MATH  Google Scholar 

  90. Hughes, T.J.R., Franca, L.P., Balestra, M.: A new finite element formulation for computational fluid dynamics. V. Circumventing the Babuška–Brezzi condition: a stable Petrov-Galerkin formulation of the Stokes problem accommodating equal-order interpolations. Comput. Methods Appl. Mech. Eng. 59(1), 85–99 (1986)

    MATH  Google Scholar 

  91. Hughes, T.J.R., Sangalli, G.: Variational multiscale analysis: the fine-scale Green’s function, projection, optimization, localization, and stabilized methods. SIAM J. Numer. Anal. 45(2), 539–557 (2007)

    MathSciNet  MATH  Google Scholar 

  92. John, V.: A numerical study of a posteriori error estimators for convection–diffusion equations. Comput. Methods Appl. Mech. Eng. 190(5–7), 757–781 (2000)

    MathSciNet  MATH  Google Scholar 

  93. John, V.: Finite element methods for incompressible flow problems, vol. 51 of Springer Series in Computational Mathematics. Springer, Cham (2016)

  94. John, V., Kaiser, K., Novo, J.: Finite element methods for the incompressible Stokes equations with variable viscosity. ZAMM Z. Angew. Math. Mech. 96(2), 205–216 (2016)

    MathSciNet  Google Scholar 

  95. John, V., Knobloch, P.: On spurious oscillations at layers diminishing (SOLD) methods for convection–diffusion equations. I. A review. Comput. Methods Appl. Mech. Eng. 196(17–20), 2197–2215 (2007)

    MathSciNet  MATH  Google Scholar 

  96. John, V., Knobloch, P.: On spurious oscillations at layers diminishing (SOLD) methods for convection-diffusion equations. II. Analysis for \(P_1\) and \(Q_1\) finite elements. Comput. Methods Appl. Mech. Eng. 197(21–24), 1997–2014 (2008)

    MATH  Google Scholar 

  97. John, V., Layton, W., Manica, C.C.: Convergence of time-averaged statistics of finite element approximations of the Navier–Stokes equations. SIAM J. Numer. Anal. 46(1), 151–179 (2007)

    MathSciNet  MATH  Google Scholar 

  98. John, V., Linke, A., Merdon, C., Neilan, M., Rebholz, L.G.: On the divergence constraint in mixed finite element methods for incompressible flows. SIAM Rev. 59, 492–544 (2017)

    MathSciNet  MATH  Google Scholar 

  99. John, V., Mitkova, T., Roland, M., Sundmacher, K., Tobiska, L., Voigt, A.: Simulations of population balance systems with one internal coordinate using finite element methods. Chem. Eng. Sci. 64(4), 733–741 (2009)

    Google Scholar 

  100. John, V., Novo, J.: On (essentially) non-oscillatory discretizations of evolutionary convection–diffusion equations. J. Comput. Phys. 231(4), 1570–1586 (2012)

    MathSciNet  MATH  Google Scholar 

  101. John, V., Novo, J.: A robust SUPG norm a posteriori error estimator for stationary convection–diffusion equations. Comput. Methods Appl. Mech. Eng. 255, 289–305 (2013)

    MathSciNet  MATH  Google Scholar 

  102. John, V., Schmeyer, E.: Finite element methods for time-dependent convection–diffusion–reaction equations with small diffusion. Comput. Methods Appl. Mech. Eng. 198(3–4), 475–494 (2008)

    MathSciNet  MATH  Google Scholar 

  103. John, V., Schumacher, L.: A study of isogeometric analysis for scalar convection–diffusion equations. Appl. Math. Lett. 27, 43–48 (2014)

    MathSciNet  MATH  Google Scholar 

  104. Johnson, C., Schatz, A.H., Wahlbin, L.B.: Crosswind smear and pointwise errors in streamline diffusion finite element methods. Math. Comput. 49(179), 25–38 (1987)

    MathSciNet  MATH  Google Scholar 

  105. Knobloch, P.: Improvements of the Mizukami–Hughes method for convection–diffusion equations. Comput. Methods Appl. Mech. Eng. 196(1–3), 579–594 (2006)

    MathSciNet  MATH  Google Scholar 

  106. Knopp, T., Lube, G., Rapin, G.: Stabilized finite element methods with shock capturing for advection–diffusion problems. Comput. Methods Appl. Mech. Eng. 191(27–28), 2997–3013 (2002)

    MathSciNet  MATH  Google Scholar 

  107. Kuzmin, D.: On the design of general-purpose flux limiters for finite element schemes. I. Scalar convection. J. Comput. Phys. 219(2), 513–531 (2006)

    MathSciNet  MATH  Google Scholar 

  108. Kuzmin, D.: Algebraic flux correction for finite element discretizations of coupled systems. In: Manolis, P., Eugenio, O., Bernard, S. (eds.) Proceedings of the International Conference on Computational Methods for Coupled Problems in Science and Engineering, pp. 1–5. CIMNE, Barcelona (2007)

    Google Scholar 

  109. Kuzmin, D.: Linearity-preserving flux correction and convergence acceleration for constrained Galerkin schemes. J. Comput. Appl. Math. 236(9), 2317–2337 (2012)

    MathSciNet  MATH  Google Scholar 

  110. Kuzmin, D., Möller, M.: Algebraic flux correction I. Scalar conservation laws. In: Kuzmin, D., Löhner, R., Turek, S. (eds.) Flux-Corrected Transport. Principles, Algorithms, and Applications, pp. 155–206. Springer, Berlin (2005)

    Google Scholar 

  111. Kuzmin, D., Turek, S.: High-resolution FEM-TVD schemes based on a fully multidimensional flux limiter. J. Comput. Phys. 198(1), 131–158 (2004)

    MathSciNet  MATH  Google Scholar 

  112. Layton, W.: Introduction to the Numerical Analysis of Incompressible Viscous Flows, Volume 6 of Computational Science & Engineering. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2008)

    Google Scholar 

  113. Lederer, P.L., Linke, A., Merdon, C., Schöberl, J.: Divergence-free reconstruction operators for pressure-robust Stokes discretizations with continuous pressure finite elements. SIAM J. Numer. Anal. 55(3), 1291–1314 (2017)

    MathSciNet  MATH  Google Scholar 

  114. Liao, Q., Silvester, D.: Robust stabilized Stokes approximation methods for highly stretched grids. IMA J. Numer. Anal. 33(2), 413–431 (2013)

    MathSciNet  MATH  Google Scholar 

  115. Linke, A.: On the role of the Helmholtz decomposition in mixed methods for incompressible flows and a new variational crime. Comput. Methods Appl. Mech. Eng. 268, 782–800 (2014)

    MathSciNet  MATH  Google Scholar 

  116. Linke, A., Matthies, G., Tobiska, L.: Robust arbitrary order mixed finite element methods for the incompressible Stokes equations with pressure independent velocity errors. ESAIM Math. Model. Numer. Anal. 50(1), 289–309 (2016)

    MathSciNet  MATH  Google Scholar 

  117. Linke, A., Merdon, C.: Pressure-robustness and discrete Helmholtz projectors in mixed finite element methods for the incompressible Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 311, 304–326 (2016)

    MathSciNet  Google Scholar 

  118. Löhner, R., Morgan, K., Peraire, J., Vahdati, M.: Finite element flux-corrected transport (FEM-FCT) for the Euler and Navier–Stokes equations. Int. J. Numer. Methods Fluids 7(10), 1093–1109 (1987)

    MATH  Google Scholar 

  119. Lube, G., Arndt, D., Dallmann, H.: Understanding the limits of inf-sup stable Galerkin-FEM for incompressible flows. In: Boundary and interior layers, computational and asymptotic methods—BAIL 2014, volume 108 of Lect. Notes Comput. Sci. Eng., pp. 147–169. Springer, Cham (2015)

  120. Lube, G., Rapin, G.: Residual-based stabilized higher-order FEM for advection-dominated problems. Comput. Methods Appl. Mech. Eng. 195(33–36), 4124–4138 (2006)

    MathSciNet  MATH  Google Scholar 

  121. Micheletti, S., Perotto, S., Picasso, M.: Stabilized finite elements on anisotropic meshes: a priori error estimates for the advection–diffusion and the Stokes problems. SIAM J. Numer. Anal. 41(3), 1131–1162 (2003)

    MathSciNet  MATH  Google Scholar 

  122. Mizukami, A., Hughes, T.J.R.: A Petrov–Galerkin finite element method for convection-dominated flows: an accurate upwinding technique for satisfying the maximum principle. Comput. Methods Appl. Mech. Eng. 50(2), 181–193 (1985)

    MathSciNet  MATH  Google Scholar 

  123. Nävert, U.: A finite element method for convection–diffusion problems. Ph.D. Thesis, Chalmers University of Technology (1982)

  124. Niijima, K.: Pointwise error estimates for a streamline diffusion finite element scheme. Numer. Math. 56(7), 707–719 (1990)

    MathSciNet  MATH  Google Scholar 

  125. Roos, H.-G., Stynes, M.: Some open questions in the numerical analysis of singularly perturbed differential equations. Comput. Methods Appl. Math. 15(4), 531–550 (2015)

    MathSciNet  MATH  Google Scholar 

  126. Roos, H.-G., Stynes, M., Tobiska, L.: Numerical Methods for Singularly Perturbed Differential Equations. Convection–Diffusion and Flow Problems, vol. 24 of Springer Series in Computational Mathematics. Springer, Berlin (1996)

  127. Roos, H.-G., Stynes, M., Tobiska, L.: Robust Numerical Methods for Singularly Perturbed Differential Equations. Convection-Diffusion-Reaction and Flow Problems, vol. 24 of Springer Series in Computational Mathematics, 2nd edn. Springer, Berlin (2008)

  128. Saad, Y.: A flexible inner–outer preconditioned GMRES algorithm. SIAM J. Sci. Comput. 14(2), 461–469 (1993)

    MathSciNet  MATH  Google Scholar 

  129. Sangalli, G.: Robust a-posteriori estimator for advection–diffusion–reaction problems. Math. Comput. 77(261), 41–70 (2008). (electronic)

    MathSciNet  MATH  Google Scholar 

  130. Schötzau, D., Schwab, C., Stenberg, R.: Mixed \(hp\)-FEM on anisotropic meshes. II. Hanging nodes and tensor products of boundary layer meshes. Numer. Math. 83(4), 667–697 (1999)

    MathSciNet  MATH  Google Scholar 

  131. Schroeder, P.W., Lube, G.: Pressure-robust analysis of divergence-free and conforming FEM for evolutionary incompressible Navier-Stokes flows. J. Num. Math., Accepted for publication (2017)

  132. Schwegler, K., Bause, M.: Goal-oriented a posteriori error control for nonstationary convection-dominated transport problems. Technical Report arXiv:1601.06544 (2016)

  133. Scott, L.R., Vogelius, M.: Conforming finite element methods for incompressible and nearly incompressible continua. In: Large-Scale Computations in Fluid Mechanics, Part 2 (La Jolla, Calif., 1983), Volume 22 of Lectures in Appl. Math., pp. 221–244. Amer. Math. Soc., Providence (1985)

  134. Speleers, H., Manni, C., Pelosi, F., Sampoli, M.L.: Isogeometric analysis with Powell–Sabin splines for advection–diffusion–reaction problems. Comput. Methods Appl. Mech. Eng. 221/222, 132–148 (2012)

    MathSciNet  MATH  Google Scholar 

  135. Tabata, M., Tagami, D.: Error estimates for finite element approximations of drag and lift in nonstationary Navier–Stokes flows. Japan J. Ind. Appl. Math. 17(3), 371–389 (2000)

    MathSciNet  MATH  Google Scholar 

  136. Tobiska, L., Verfürth, R.: Robust a posteriori error estimates for stabilized finite element methods. IMA J. Numer. Anal. 35(4), 1652–1671 (2015)

    MathSciNet  MATH  Google Scholar 

  137. Vanka, S.P.: Block-implicit multigrid solution of Navier–Stokes equations in primitive variables. J. Comput. Phys. 65(1), 138–158 (1986)

    MathSciNet  MATH  Google Scholar 

  138. Verfürth, R.: A posteriori error estimators for convection–diffusion equations. Numer. Math. 80(4), 641–663 (1998)

    MathSciNet  MATH  Google Scholar 

  139. Verfürth, R.: Robust a posteriori error estimates for stationary convection–diffusion equations. SIAM J. Numer. Anal. 43(4), 1766–1782 (2005). (electronic)

    MathSciNet  MATH  Google Scholar 

  140. Wilbrandt, U., Bartsch, C., Ahmed, N., Alia, N., Anker, F., Blank, L., Caiazzo, A., Ganesan, S., Giere, S., Matthies, G., Meesala, R., Shamim, A., Venkatesan, J., John, V.: ParMooN—a modernized program package based on mapped finite elements. Comput. Math. Appl. 74(1), 74–88 (2017)

    MathSciNet  MATH  Google Scholar 

  141. Zalesak, S.T.: Fully multidimensional flux-corrected transport algorithms for fluids. J. Comput. Phys. 31(3), 335–362 (1979)

    MathSciNet  MATH  Google Scholar 

  142. Zhang, S.: A new family of stable mixed finite elements for the 3D Stokes equations. Math. Comput. 74(250), 543–554 (2005)

    MathSciNet  MATH  Google Scholar 

  143. Zhou, G.H., Rannacher, R.: Pointwise superconvergence of the streamline diffusion finite-element method. Numer. Methods Partial Differ. Equ 12(1), 123–145 (1996)

    MathSciNet  MATH  Google Scholar 

  144. Zhou, G.: How accurate is the streamline diffusion finite element method? Math. Comput. 66(217), 31–44 (1997)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work of P. Knobloch was supported through the Grant No. 16-03230S of the Czech Science Foundation. The work of J. Novo was supported by Spanish MINECO under Grants MTM2013-42538-P (MINECO, ES) and MTM2016-78995-P (AEI/FEDER, UE). We would like to thank an anonymous referee whose suggestions helped us to improve this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker John.

Additional information

Communicated by Thomas Apel.

This paper is dedicated to Ulrich Langer and Arnd Meyer on the occasions of their 65th birthdays.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

John, V., Knobloch, P. & Novo, J. Finite elements for scalar convection-dominated equations and incompressible flow problems: a never ending story?. Comput. Visual Sci. 19, 47–63 (2018). https://doi.org/10.1007/s00791-018-0290-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00791-018-0290-5

Keywords

Navigation