Skip to main content
Log in

Multigrid and sparse-grid schemes for elliptic control problems with random coefficients

  • Regular Article
  • Published:
Computing and Visualization in Science

Abstract

A multigrid and sparse-grid computational approach to solving nonlinear elliptic optimal control problems with random coefficients is presented. The proposed scheme combines multigrid methods with sparse-grids collocation techniques. Within this framework the influence of randomness of problem’s coefficients on the control provided by the optimal control theory is investigated. Numerical results of computation of stochastic optimal control solutions and formulation of mean control functions are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Babuška I., Nobile F., Tempone R.: A stochastic collocation method for elliptic partial differential equations with random input data. SIAM J. Numer. Anal. 45(3), 1005–1034 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bebernes J., Eberly D.: Mathematical Problems from Combustion Theory. Springer, New York (1988)

    Google Scholar 

  3. Borzì A.: High-order discretization and multigrid solution of elliptic nonlinear constrained optimal control problems. J. Comput. Appl. Math. 200, 67–85 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  4. Borzì A.: Smoothers for control- and state-constrained optimal control problems. Comput. Vis. Sci. 11, 59–66 (2008)

    Article  MathSciNet  Google Scholar 

  5. Borzì A., Borzì G.: An efficient algebraic multigrid method for solving optimality systems. Comput. Vis. Sci. 7(3/4), 183–188 (2004)

    MATH  MathSciNet  Google Scholar 

  6. Borzì A., Kunisch K.: The numerical solution of the steady state solid fuel ignition model and its optimal control. SIAM J. Sci. Comput. 22(1), 263–284 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  7. Borzì A., Schulz V.: Multigrid methods for PDE optimization. SIAM Rev. 51, 361–395 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  8. Borzì A., von Winckel G.: Multigrid methods and sparse-grid collocation techniques for parabolic optimal control problems with random coefficients. SIAM J. Sci. Comput. 31, 2172–2192 (2009)

    Article  MathSciNet  Google Scholar 

  9. Brandt A.: Multi-level adaptive solutions to boundary-value problems. Math. Comput. 31, 333–390 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  10. Bungartz H.-J., Griebel M.: Sparse grids. Acta Numerica 13, 147–269 (2004)

    Article  MathSciNet  Google Scholar 

  11. Elman H., Furnival D.: Solving the stochastic steady-state diffusion problem using multigrid. IMA J. Numer. Anal. 27, 675–688 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  12. Ganapathysubramanian B., Zabaras N.: Sparse grid collocation schemes for stochastic natural convection problems. J. Comput. Phys. 225, 652–685 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. Gasca M., Sauer T.: Polynomial interpolation in several variables. Adv. Comput. Math. 12, 377–410 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  14. Ghanem R.G., Spanos P.D.: Stochastic Finite Elements: A Spectral Approach. Springer, New York (1991)

    MATH  Google Scholar 

  15. Hackbusch W.: Multi-grid Methods and Applications. Springer, New York (1985)

    MATH  Google Scholar 

  16. Huang S.P., Mahadevan S., Rebba R.: Collocation-based stochastic finite element analysis for random field problems. Probabilistic Eng. Mech. 22, 194–205 (2007)

    Article  Google Scholar 

  17. Ito K., Kunisch K.: Lagrange Multiplier Approach to Variational Problems and Applications. SIAM, Philadelphia (2008)

    MATH  Google Scholar 

  18. Klimke A., Wohlmuth B.: Algorithm 847: Spinterp: piecewise multilinear hierarchical sparse grid interpolation in MATLAB. ACM Trans. Math. Softw. 31, 561–579 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  19. Lions J.L.: Optimal Control of Systems Governed by Partial Differential Equations. Springer, Berlin (1971)

    MATH  Google Scholar 

  20. Lions J.-L.: Control of Distributed Singular Systems. Gauthier-Villars, Paris (1985)

    Google Scholar 

  21. Loeve M.: Probability Theory. Vols. I & II, IV edn. Springer, New York (1978)

    Google Scholar 

  22. Marzouk Y.M., Najm H.N., Rahn L.A.: Stochastic spectral methods for efficient Bayesian solution of inverse problems. J. Comput. Phys. 224, 560–586 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  23. Nobile F., Tempone R., Webster C.: A sparse grid stochastic collocation method for elliptic partial differential equations with random input data. SIAM J. Numer. Anal. 46, 2309–2345 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  24. Putko M.M., Newman P.A., Taylor A.C. III, Green L.L.: Approach for uncertainty propagation and robust design in CFD using sensitivity derivatives. J. Fluids Eng. 124, 60–69 (2002)

    Article  Google Scholar 

  25. Schulz V., Schillings C.: On the nature and treatment of uncertainties in aerodynamic design. AIAA J. 47, 646–654 (2009)

    Article  Google Scholar 

  26. Schwab Ch, Todor R.A.: Sparse finite elements for stochastic elliptic problems higher order moments. Computing 71, 43–63 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  27. Seynaeve B., Rosseel E., Nicolaï B., Vandewalle S.: Fourier mode analysis of multigrid methods for partial differential equations with random coefficients. J. Comput. Phys. 224, 132–149 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  28. Trottenberg U., Oosterlee C., Schüller A.: Multigrid. Academic Press, London (2001)

    MATH  Google Scholar 

  29. Xiu D., Hesthaven J.S.: High-order collocation methods for differential equations with random inputs. SIAM J. Sci. Comput. 27(3), 1118–1139 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  30. Xiu D., Karniadakis G.E.: The Wiener-Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 24, 619–644 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  31. Zabaras N., Ganapathysubramanian B.: A scalable framework for the solution of stochastic inverse problems using a sparse grid collocation approach. J. Comput. Phys. 227, 4697–4735 (2008)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Borzì.

Additional information

Supported in part by the Austrian Science Fund FWF project P18136-N13 “Quantum optimal control of semiconductor nanostructures” and F3205-N18 “Fast Multigrid Methods for Inverse Problems”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borzì, A. Multigrid and sparse-grid schemes for elliptic control problems with random coefficients. Comput. Visual Sci. 13, 153–160 (2010). https://doi.org/10.1007/s00791-010-0134-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00791-010-0134-4

Keywords

Mathematics Subject Classification (2000)

Navigation