Skip to main content

Advertisement

Log in

Comparative analysis of the effect of self-assembling peptide P11-4 on enamel erosion: a confocal laser scanning microscopy study

  • Research
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

This study aims to comparatively assess the preventive and protective effects of the self-assembling peptide P11-4 on enamel erosion and evaluate the potential for enamel surface recovery when professional products are combined with home-use dental-care products during the erosive process.

Materials and methods

Ninety-nine bovine incisors were divided into nine groups: a control group, four groups with the application of professional-products [P11-4 peptide (Curodont-Repair), stannous/Sn2+ containing solution (8% Sn2+), casein-phosphopeptide-amorphous-calcium-phosphate fluoride/CPP-ACPF (MI Varnish), sodium fluoride/NaF (Profluorid)] and four groups with the combination of professional products and home-use daily dental care products [P11-4 peptide (Curodont Repair + Curodont Protect), stannous ions containing agents (8% Sn2++Emofluor Gel Intensive-Care), CPP-ACPF (MI Varnish + MI Paste Plus), NaF (Profluorid + ReminPro)].

Professional products were applied once before a five-day erosive cycle, involving six 2-minute citric-acid exposures per day. In combined-groups, a home-use dental-care product was applied daily at the end of each cycle day. After the cycle, lesion depth and fluorescence were analyzed using confocal-laser-scanning-microscopy, and results were statistically evaluated using paired t-tests, ANOVA, and Tukey’s post-hoc tests.

Results

The P11-4 group was significantly more effective among the professional-only groups in both parameters (p<0.001). All combined-groups were determined to be statistically more successful than their respective professional-groups in both parameters (p<0.05). Based on lesion depth data, it was observed that the P11-4 and stannous-containing combined-groups showed statistically similar results (p>0.05). In terms of lesion fluorescence data, the P11-4 combined-group was found to be statistically more successful than all other study groups (p<0.05).

Conclusion

The self-assembling peptide P11-4 was determined to exhibit the best preventive and protective anti-erosive effect in both professional and combined applications.

Clinical Relevance

A positive relationship was observed between the support of professional applications with home-use daily-dental-care products and protection against erosive lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Data availability

No datasets were generated or analysed during the current study.

References

  1. Schlueter N et al (2020) Terminology of erosive tooth wear: consensus report of a workshop organized by the ORCA and the Cariology Research Group of the IADR. Caries Res 54(1):2–6

    Article  PubMed  Google Scholar 

  2. Lussi A, Schlueter N, Rakhmatullina E, Ganss C (2011) Dental erosion - An overview with emphasis on chemical and histopathological aspects. . https://doi.org/10.1159/000325915

  3. Seong J, Claydon N, Macdonald E, Garner S, Newcombe RG, West N (2017) A randomised clinical trial to determine the abrasive effect of the tongue on human enamel loss with and without a prior erosive challenge. J Dent 58:48–53. https://doi.org/10.1016/j.jdent.2017.01.011

    Article  CAS  PubMed  Google Scholar 

  4. Lussi A et al (2019) The use of fluoride for the prevention of dental erosion and erosive tooth wear in children and adolescents. https://doi.org/10.1007/s40368-019-00420-0

  5. Schlueter N, Luka B (2018) Erosive tooth wear–a review on global prevalence and on its prevalence in risk groups. Br Dent J 224(5):364–370

    Article  CAS  PubMed  Google Scholar 

  6. Ganss C, Lussi A (2006) Definition of erosion and links to tooth wear dental erosion: from diagnosis to therapy. Monogr Oral Sci 20:9–16. https://doi.org/10.1159/000093344

    Article  CAS  PubMed  Google Scholar 

  7. Hasselkvist A, Johansson A, Johansson AK (2016) A 4 year prospective longitudinal study of progression of dental erosion associated to lifestyle in 13–14 year-old Swedish adolescents. J Dent 47:55–62. https://doi.org/10.1016/j.jdent.2016.02.002

    Article  PubMed  Google Scholar 

  8. O’Toole S, Bernabé E, Moazzez R, Bartlett D (2017) Timing of dietary acid intake and erosive tooth wear: A case-control study. J Dent 56:99–104. https://doi.org/10.1016/j.jdent.2016.11.005

    Article  PubMed  Google Scholar 

  9. Butera A, Gallo S, Pascadopoli M, Scardina GA, Pezzullo S, Scribante A (2022) Home oral care domiciliary protocol for the management of dental erosion in rugby players: a randomized clinical trial. J Clin Med 11(16):4893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lussi A, Hellwig E, Zero D, Jaeggi T (2006) Erosive tooth wear: diagnosis, risk factors and prevention. Am J Dent 19(6):319–25

    PubMed  Google Scholar 

  11. Chawhuaveang DD, Yu OY, Yin IX, Lam WYH, Chu CH (2022) Topical agents for nonrestorative management of dental erosion: a narrative review. Healthcare 10(8):1413. https://doi.org/10.3390/healthcare10081413

    Article  PubMed  PubMed Central  Google Scholar 

  12. Linnett V, Seow WK (2001) Dental erosion in children: A literature review. Pediatr Dent 23(1):37–43

    CAS  PubMed  Google Scholar 

  13. Ünal M, Candan M, İpek İ, Küçükoflaz M, Özer A (2021) Evaluation of the microhardness of different resin-based dental restorative materials treated with gastric acid: Scanning electron microscopy–energy dispersive X-ray spectroscopy analysis, Microsc Res Tech, 84(9):2140–2148. https://doi.org/10.1002/JEMT.23769

  14. Unal M, Oztas N (2015) Remineralization capacity of three fissure sealants with and without gaseous ozone on non-cavitated incipient pit and fissure caries. J Clin Pediatr Dentistry 39(4):364–370. https://doi.org/10.17796/1053-4628-39.4.364

    Article  CAS  Google Scholar 

  15. Reynolds EC et al (2008) Fluoride and casein phosphopeptide-amorphous calcium phosphate. J Dent Res 87(4):344–348

    Article  CAS  PubMed  Google Scholar 

  16. Wasser G, João-Souza SH, Lussi A, Carvalho TS (2018) Erosion-protecting effect of oral-care products available on the Swiss market. A pilot study. Swiss Dent J 128(4):290–296. https://doi.org/10.61872/sdj-2018-04-394

    Article  PubMed  Google Scholar 

  17. Lussi A, Carvalho TS (2015) The future of fluorides and other protective agents in erosion prevention. Caries Res. https://doi.org/10.1159/000380886

    Article  PubMed  Google Scholar 

  18. Korner P, Wiedemeier DB, Attin T, Wegehaupt FJ (2020) Prevention of enamel softening by rinsing with a calcium solution before dental erosion. Caries Res 54(2):127–133. https://doi.org/10.1159/000504747

    Article  CAS  PubMed  Google Scholar 

  19. Machado A, SAKAE L, Niemeyer SH, Carvalho TS, Amaechi B, Scaramucci T (2020) Anti-erosive effect of rinsing before or after toothbrushing with a Fluoride/Stannous Ions solution: an in situ investigation: Application order of Fluoride/Tin products for erosive tooth wear. J Dent 101:103450. https://doi.org/10.1016/j.jdent.2020.103450

    Article  CAS  PubMed  Google Scholar 

  20. Ranjitkar S, Rodriguez JM, Kaidonis JA, Richards LC, Townsend GC, Bartlett DW (2009) The effect of casein phosphopeptide-amorphous calcium phosphate on erosive enamel and dentine wear by toothbrush abrasion. J Dent 37(4):250–254. https://doi.org/10.1016/j.jdent.2008.11.013

    Article  CAS  PubMed  Google Scholar 

  21. Piekarz C, Ranjitkar S, Hunt D, McIntyre J (2008) An in vitro assessment of the role of Tooth Mousse in preventing wine erosion. Aust Dent J 53(1). https://doi.org/10.1111/j.1834-7819.2007.00003.x

  22. Hunter ML, West NX, Hughes JA, Newcombe RG, Addy M (2000) Relative susceptibility of deciduous and permanent dental hard tissues to erosion by a low pH fruit drink in vitro. J Dent 28(4):265–270. https://doi.org/10.1016/S0300-5712(99)00074-3

    Article  CAS  PubMed  Google Scholar 

  23. Carneiro KMM et al (2016) Amyloid-like ribbons of amelogenins in enamel mineralization. Sci Rep 6. https://doi.org/10.1038/srep23105

  24. Shafiei F, Hossein BG, Farajollahi MM, Fathollah M, Marjan B, Tahereh JK (2015) Leucine-rich amelogenin peptide (LRAP) as a surface primer for biomimetic remineralization of superficial enamel defects: an in vitro study. Scanning 37(3):165–236. https://doi.org/10.1002/sca.21196

    Article  CAS  Google Scholar 

  25. Brunton PA et al (2013) Treatment of early caries lesions using biomimetic self-assembling peptides-A clinical safety trial. Br Dent J 215(4). https://doi.org/10.1038/sj.bdj.2013.741

  26. Savas S, Kucukyilmaz E, Celik EU (2016) Effects of remineralization agents on artificial carious lesions. Pediatr Dent 38(7):511–518

    PubMed  Google Scholar 

  27. B K A, Y. R, and, Puranik MP (2022) Remineralization of early enamel caries lesions using self-assembling peptides P11-4: systematic review and meta-analysis. https://doi.org/10.1016/j.jobcr.2022.03.012

  28. Ceci M, Mirando M, Beltrami R, Chiesa M, Colombo M, Poggio C (2016) Effect of self-assembling peptide P11-4 on enamel erosion: AFM and SEM studies. Scanning 38(4):285–375. https://doi.org/10.1002/sca.21276

    Article  CAS  Google Scholar 

  29. Suda S et al (2018) Application of the self-assembling peptide p11-4 for prevention of acidic erosion. Oper Dent 43(4):E166–E172. https://doi.org/10.2341/17-175-L

    Article  CAS  PubMed  Google Scholar 

  30. Üstün N, Güven Y (2022) Effect of three different remineralizing agents on artificial erosive lesions of primary teeth. Aust Dent J 67(3). https://doi.org/10.1111/adj.12922

  31. Baltaci E, Bilmenoglu C, Ozgur O, Ozveren N (2023) Effect of three different remineralising agents on prevention against acidic erosion of primary teeth: an in vitro study. Eur Archives Pediatr Dentistry. https://doi.org/10.1007/s40368-023-00834-x

  32. Moras CG, Acharya SR, Adarsh UK, Unnikrishnan VK (2023) Regenerative biomineralization potential of commercially available remineralizing agents as a preventive treatment approach for tooth erosion–An in vitro laser-induced breakdown spectroscopy analysis. J Conserv Dent 26(2):165

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Yan-Fang Ren DDS (2011) Dental erosion: etiology, diagnosis and prevention. ADA: The academy of dental therapeutic and stomatology,

  34. Butera A et al (2022) Home oral care with biomimetic hydroxyapatite vs. conventional fluoridated toothpaste for the remineralization and desensitizing of white spot lesions: randomized clinical trial. Int J Environ Res Public Health 19(14):8676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Amaechi BT, Higham SM (2005) Dental erosion: possible approaches to prevention and control. J Dent 33(3):243–252. https://doi.org/10.1016/J.JDENT.2004.10.014

    Article  CAS  PubMed  Google Scholar 

  36. Marto CM, Baptista Paula A, Nunes T, Pimenta M, Abrantes AM, Pires AS, Carrilho E (2019) Evaluation of the efficacy of dentin hypersensitivity treatments—A systematic review and follow-up analysis. J Oral Rehab 46(10):952–990

    Article  CAS  Google Scholar 

  37. de Né Sousa YG et al (2022) Treatment for dental erosion: a systematic review of in vitro studies. Peer J 10:e13864. https://doi.org/10.7717/peerj.13864

    Article  CAS  Google Scholar 

  38. Dionysopoulos D, Tolidis K, Tsitrou E, Kouros P, Naka O (2020) Quantitative and qualitative evaluation of enamel erosion following air abrasion with bioactive glass 45S5. Oral Health Prev Dent 18(3):529–536. https://doi.org/10.3290/j.ohpd.a44689

    Article  PubMed  Google Scholar 

  39. Attin T, Wegehaupt F, Gries D, Wiegand A (2007) The potential of deciduous and permanent bovine enamel as substitute for deciduous and permanent human enamel: Erosion-abrasion experiments. J Dent 35(10):773–777. https://doi.org/10.1016/j.jdent.2007.07.007

    Article  CAS  PubMed  Google Scholar 

  40. Shellis RP, Ganss C, Ren Y, Zero DT, Lussi A (2011) Methodology and models in erosion research: Discussion and conclusions. Caries Res 45(1):69–77. https://doi.org/10.1159/000325971

    Article  PubMed  Google Scholar 

  41. Lynch RJM, Ten Cate JM (2006) The effect of lesion characteristics at baseline on subsequent de- and remineralisation behaviour. Caries Res 40(6):530–535. https://doi.org/10.1159/000095653

    Article  CAS  PubMed  Google Scholar 

  42. Leung VWH, Darvell BW (1997) Artificial salivas for in vitro studies of dental materials. J Dent 25(6):475–484. https://doi.org/10.1016/S0300-5712(96)00068-1

    Article  CAS  PubMed  Google Scholar 

  43. Mohd Said SNB, Ekambaram M, Yiu CKY (2017) Effect of different fluoride varnishes on remineralization of artificial enamel carious lesions. Int J Paediatr Dent 27(3). https://doi.org/10.1111/ipd.12243

  44. Carvalho TS, Lussi A (2014) Combined effect of a fluoride-, stannous- and chitosan-containing toothpaste and stannous-containing rinse on the prevention of initial enamel erosion-abrasion. J Dent 42(4):450–459. https://doi.org/10.1016/j.jdent.2014.01.004

    Article  CAS  PubMed  Google Scholar 

  45. da S. Ávila DM, Zanatta RF, Scaramucci T, Aoki IV, Torres CRG, Borges AB (2017) Influence of bioadhesive polymers on the protective effect of fluoride against erosion. J Dent 56:45–52. https://doi.org/10.1016/j.jdent.2016.10.015

    Article  CAS  PubMed  Google Scholar 

  46. Körner P, Georgis L, Wiedemeier DB, Attin T, Wegehaupt FJ (2021) Potential of different fluoride gels to prevent erosive tooth wear caused by gastroesophageal reflux. BMC Oral Health 21(1). https://doi.org/10.1186/s12903-021-01548-6

  47. Min JH, Kwon HK, Kim BI (2011) The addition of nano-sized hydroxyapatite to a sports drink to inhibit dental erosion - in vitro study using bovine enamel. J Dent 39(9):629–635. https://doi.org/10.1016/j.jdent.2011.07.001

    Article  CAS  PubMed  Google Scholar 

  48. Heurich E et al (2010) Quantification of dental erosion-A comparison of stylus profilometry and confocal laser scanning microscopy (CLSM). Dent Mater 26(4):326–336. https://doi.org/10.1016/j.dental.2009.12.001

    Article  CAS  PubMed  Google Scholar 

  49. Hookham MJF, Lynch RJM, Naughton DP (2021) A novel non-destructive technique for qualitative and quantitative measurement of dental erosion in its entirety by porosity and bulk tissue-loss. J Dent 110. https://doi.org/10.1016/j.jdent.2021.103688

    Article  CAS  PubMed  Google Scholar 

  50. Shashikala K, Sheela NV (2011) Qualitative analysis of re mineralized carious lesions subjected to fluoride supplement through confocal laser scanning microscope. Open J Stomatol 01(03):55–60. https://doi.org/10.4236/ojst.2011.13010

    Article  CAS  Google Scholar 

  51. González-Cabezas C et al (1998) Measurement of enamel remineralization using microradiography and confocal microscopy: a correlational study. Caries Res 32(5):385–392. https://doi.org/10.1159/000016475

    Article  PubMed  Google Scholar 

  52. Carvalho TS, Lussi A (2015) Susceptibility of enamel to initial erosion in relation to tooth type, tooth surface and enamel depth. Caries Res 49(2):109–115. https://doi.org/10.1159/000369104

    Article  PubMed  Google Scholar 

  53. Maden EA, Acar Ö, Altun C, Polat GG (2017) The effect of casein phosphopeptide-amorf calcium phosphate and acidulated phosphate fluoride gel on dental erosion in primary teeth: an in vitro study. J Clin Pediatr Dentistry 41(4). https://doi.org/10.17796/1053-4628-41.4.275

  54. Üstün N, Aktören O (2019) Analysis of efficacy of the self-assembling peptide-based remineralization agent on artificial enamel lesions. Microsc Res Tech 82(7). https://doi.org/10.1002/jemt.23254

  55. Comar LP, de Cardoso C, Charone S, Grizzo LT, Buzalaf MAR, Magalhães AC (2015) TiF4 and NaF varnishes as anti-erosive agents on enamel and dentin erosion progression in vitro. J Appl Oral Sci 23(1). https://doi.org/10.1590/1678-775720140124

  56. Murakami C, Bönecker M, Corrêa MSNP, Mendes FM, Rodrigues CRMD (2009) Effect of fluoride varnish and gel on dental erosion in primary and permanent teeth. Arch Oral Biol 54(11):997–1001. https://doi.org/10.1016/j.archoralbio.2009.08.003

    Article  CAS  PubMed  Google Scholar 

  57. Ganss C, Klimek J, Schäffer U, Spall T (2001) Effectiveness of two fluoridation measures on erosion progression in human enamel and dentine in vitro. Caries Res 35(5):325–330. https://doi.org/10.1159/000047470

    Article  CAS  PubMed  Google Scholar 

  58. Fowler C, Willson R, Rees GD (2006) In vitro microhardness studies on a new anti-erosion desensitizing toothpaste. J Clin Dentistry 17(4):100–5

    Google Scholar 

  59. Wang CP, Huang SB, Liu Y, Li JY, Yu HY (2014) The CPP-ACP relieved enamel erosion from a carbonated soft beverage: An in vitro AFM and XRD study. Arch Oral Biol 59(3):277–282. https://doi.org/10.1016/j.archoralbio.2013.11.018

    Article  CAS  PubMed  Google Scholar 

  60. Ranjitkar S, Kaidonis JA, Richards LC, Townsend GC (2009) The effect of CPP-ACP on enamel wear under severe erosive conditions. Arch Oral Biol 54(6):527–532. https://doi.org/10.1016/j.archoralbio.2009.03.006

    Article  CAS  PubMed  Google Scholar 

  61. Poggio C, Lombardini M, Dagna A, Chiesa M, Bianchi S (2009) Protective effect on enamel demineralization of a CPP-ACP paste: an AFM in vitro study. J Dent 37(12):949–954. https://doi.org/10.1016/j.jdent.2009.07.011

    Article  CAS  PubMed  Google Scholar 

  62. Bayrak S, Tuloglu N, Bicer H, Sen Tunc E (2017) Effect of fluoride varnish containing CPP-ACP on preventing enamel erosion. Scanning 2017. https://doi.org/10.1155/2017/1897825

  63. Ganss C, Marten J, Hara AT, Schlueter N (2016) Toothpastes and enamel erosion/abrasion – Impact of active ingredients and the particulate fraction. J Dent 54:62–67. https://doi.org/10.1016/j.jdent.2016.09.005

    Article  CAS  PubMed  Google Scholar 

  64. Maia AMA, Longbottom C, Gomes ASL, Girkin JM (2014) Enamel erosion and prevention efficacy characterized by confocal laser scanning microscope. Microsc Res Tech 77(6). https://doi.org/10.1002/jemt.22364

  65. Ganss C, Schlueter N, Hardt M, Schattenberg P, Klimek J (2008) Effect of fluoride compounds on enamel erosion in vitro: a comparison of amine, sodium and stannous fluoride. Caries Res 42(1):2–7. https://doi.org/10.1159/000111743

    Article  CAS  PubMed  Google Scholar 

  66. Schlueter N, Hardt M, Lussi A, Engelmann F, Klimek J, Ganss C (2009) Tin-containing fluoride solutions as anti‐erosive agents in enamel: an in vitro tin‐uptake, tissue‐loss, and scanning electron micrograph study. Eur J Oral Sci 117(4):427–434

    Article  CAS  PubMed  Google Scholar 

  67. Kyle S, Aggeli A, Ingham E, McPherson MJ (2010) Recombinant self-assembling peptides as biomaterials for tissue engineering. Biomaterials 31(36)9395–9405. https://doi.org/10.1016/j.biomaterials.2010.08.051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kirkham J et al (2007) Self-assembling peptide scaffolds promote enamel remineralization. J Dent Res 86(5):426–430

    Article  CAS  PubMed  Google Scholar 

  69. Kamal D, Hassanein H, Elkassas D, Hamza H (2018) Comparative evaluation of remineralizing efficacy of biomimetic selfassembling peptide on artificially induced enamel lesions: an in vitro study. J Conservative Dentistry 21(5). https://doi.org/10.4103/JCD.JCD_123_18

  70. Bröseler F, Tietmann C, Bommer C, Drechsel T, Heinzel-Gutenbrunner M, Jepsen S (2020) Randomised clinical trial investigating self-assembling peptide P11-4 in the treatment of early caries. Clin Oral Investig 24(1):123–132. https://doi.org/10.1007/s00784-019-02901-4

    Article  PubMed  Google Scholar 

  71. Konradsson K, Lingström P, Emilson CG, Johannsen G, Ramberg P, Johannsen A (2020) Stabilized stannous fluoride dentifrice in relation to dental caries, dental erosion and dentin hypersensitivity: a systematic review. Am J Dent 33(2):95–105

    PubMed  Google Scholar 

  72. Alkilzy M, Tarabaih A, Santamaria RM, Splieth CH (2018) Self-assembling peptide P11-4 and fluoride for regenerating Enamel. J Dent Res 97(2). https://doi.org/10.1177/0022034517730531

  73. Kind L et al (2017) Biomimetic remineralization of carious lesions by self-assembling peptide. J Dent Res 96(7):790–797

    Article  CAS  PubMed  Google Scholar 

  74. Paepegaey AM et al (2013) Measuring enamel erosion: A comparative study of contact profilometry, non-contact profilometry and confocal laser scanning microscopy. Dent Mater 29(12):1265–1272. https://doi.org/10.1016/j.dental.2013.09.015

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Izmir Katip Celebi University Scientific Research Projects Coordination Unit (Project number: 2022-GAP-DİSF-0047).

Funding

This project was supported by the Scientific Research Projects Coordination Unıt of the Izmir Katip Celebi University.

Project Number: 2022-GAP-DİSF-0047.

Author information

Authors and Affiliations

Authors

Contributions

MA: conceptualization, literature review, methodology, writing-original draft preparation, data analysis, review-writing and editing BYS: literature review, methodology, application, writing, data analysis, review-writing and editing.

Corresponding author

Correspondence to Buse Yilmaz Sen.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by any authors.

Informed consent

For this type of study, formal consent is not required.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yilmaz Sen, B., Akcay, M. Comparative analysis of the effect of self-assembling peptide P11-4 on enamel erosion: a confocal laser scanning microscopy study. Clin Oral Invest 29, 29 (2025). https://doi.org/10.1007/s00784-024-06115-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00784-024-06115-1

Keywords