Skip to main content

Advertisement

Log in

Physicochemical and biological properties of experimental dental adhesives doped with a guanidine-based polymer: an in vitro study

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

The objective of this study is to formulate experimental dental adhesives with different polyhexamethylene guanidine hydrochloride concentrations (PHMGH) and evaluate their physical, chemical, and biological properties.

Materials and methods

The experimental adhesives were formulated with 0 (control, GCTRL), 0.5 (G0.5%), 1 (G1%), or 2 (G2%) wt.% into the adhesive. The adhesives were analyzed for degree of conversion (DC%), softening in solvent (ΔKHN%), ultimate tensile strength (UTS), microtensile bond strength (μTBS) immediately and after 1 year of aging, antibacterial activity, and cytotoxicity.

Results

There were no differences among groups for DC%, ΔKHN%, and UTS (p > 0.05%). There were no differences between each PHMGH-doped adhesive compared to GCTRL in the immediate μ-TBS (p > 0.05). Adhesives with at least 1 wt.% of PHMGH presented better stability of μ-TBS. PHMGH-doped adhesives showed improved longitudinal μ-TBS compared to GCTRL (p < 0.05). Lower Streptococcus mutans biofilm formation was observed for PHMGH-doped adhesives (p < 0.05). There was lower viability of planktonic S. mutans in the media in contact with the samples when at least 1 wt.% of PHGMGH was incorporated (p < 0.05). The formulated adhesives showed no cytotoxicity against pulp cells (p > 0.05).

Conclusions

The adhesive with 2 wt.% of PHMGH showed the highest antibacterial activity, without affecting the physicochemical properties and cytotoxicity, besides conferring stability for the dental adhesion.

Clinical relevance

PHMGH, a positively charged polymer, conveyed antibacterial activity to dental adhesives. Furthermore, it did not negatively affect the essential physicochemical and biocompatibility properties of the adhesives. More importantly, the incorporation of PHMGH provided stability for the μ-TBS compared to the control group without this additive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Breschi L, Mazzoni A, Ruggeri A, Cadenaro M, Di Lenarda R, De Stefano DE (2008) Dental adhesion review: aging and stability of the bonded interface. Dent Mater 24:90–101. https://doi.org/10.1016/j.dental.2007.02.009

    Article  PubMed  Google Scholar 

  2. Spencer P, Ye Q, Song L, Parthasarathy R, Boone K, Misra A, Tamerler C (2019) Threats to adhesive/dentin interfacial integrity and next generation bio-enabled multifunctional adhesives. J Biomed Mater Res B Appl Biomater 107:2673–2683. https://doi.org/10.1002/jbm.b.34358

    Article  PubMed  PubMed Central  Google Scholar 

  3. Mazzoni A, Tjäderhane L, Checchi V, Di Lenarda R, Salo T, Tay FR, Pashley DH, Breschi L (2015) Role of dentin MMPs in caries progression and bond stability. J Dent Res 94:241–251. https://doi.org/10.1177/0022034514562833

    Article  PubMed  PubMed Central  Google Scholar 

  4. Huang B, Cvitkovitch DG, Santerre JP, Finer Y (2018) Biodegradation of resin-dentin interfaces is dependent on the restorative material, mode of adhesion, esterase or MMP inhibition. Dent Mater 34:1253–1262. https://doi.org/10.1016/j.dental.2018.05.008

    Article  PubMed  Google Scholar 

  5. Breschi L, Maravic T, Cunha SR, Comba A, Cadenaro M, Tjäderhane L, Pashley DH, Tay FR, Mazzoni A (2018) Dentin bonding systems: from dentin collagen structure to bond preservation and clinical applications. Dent Mater 34:78–96. https://doi.org/10.1016/j.dental.2017.11.005

    Article  PubMed  Google Scholar 

  6. Ferracane JL (2017) Models of caries formation around dental composite restorations. J Dent Res 96:364–371. https://doi.org/10.1177/0022034516683395

    Article  PubMed  Google Scholar 

  7. Eltahlah D, Lynch CD, Chadwick BL, Blum IR, Wilson NHF (2018) An update on the reasons for placement and replacement of direct restorations. J Dent 72:1–7. https://doi.org/10.1016/j.jdent.2018.03.001

    Article  PubMed  Google Scholar 

  8. Cury JA, de Oliveira BH, dos Santos AP, Tenuta LM (2016) Are fluoride releasing dental materials clinically effective on caries control? Dent Mater 32:323–333. https://doi.org/10.1016/j.dental.2015.12.002

    Article  PubMed  Google Scholar 

  9. Bayne SC, Ferracane JL, Marshall GW, Marshall SJ, van Noort R (2019) The evolution of dental materials over the past century: silver and gold to tooth color and beyond. J Dent Res 98:257–265. https://doi.org/10.1177/0022034518822808

    Article  PubMed  Google Scholar 

  10. Ferracane JL, Giannobile WV (2014) Novel biomaterials and technologies for the dental, oral, and craniofacial structures. J Dent Res 93:1185–1186. https://doi.org/10.1177/0022034514556537

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ibrahim MS, Garcia IM, Vila T, Balhaddad AA, Collares FM, Weir MD, Xu HHK, Melo MAS (2020) Multifunctional antibacterial dental sealants suppress biofilms derived from children at high risk of caries. Biomater Sci 8:3472–3484. https://doi.org/10.1039/d0bm00370k

    Article  PubMed  Google Scholar 

  12. Melo MA, Orrego S, Weir MD, Xu HH, Arola DD (2016) Designing multiagent dental materials for enhanced resistance to biofilm damage at the bonded interface. ACS Appl Mater Interfaces 8:11779–11787. https://doi.org/10.1021/acsami.6b01923

    Article  PubMed  Google Scholar 

  13. Stencel R, Kasperski J, Pakieła W, Mertas A, Bobela E, Barszczewska-Rybarek I, Chladek G (2018) Properties of experimental dental composites containing antibacterial silver-releasing filler. Materials (Basel) 11:1031. https://doi.org/10.3390/ma11061031

    Article  Google Scholar 

  14. Garcia IM, Balhaddad AA, Ibrahim MS, Weir MD, Xu HHK, Collares FM, Melo MAS (2021) Antibacterial response of oral microcosm biofilm to nano-zinc oxide in adhesive resin. Dent Mater 37:e182–e193. https://doi.org/10.1016/j.dental.2020.11.022

    Article  PubMed  Google Scholar 

  15. Garcia IM, Leitune VCB, Visioli F, Samuel SMW, Collares FM (2018) Influence of zinc oxide quantum dots in the antibacterial activity and cytotoxicity of an experimental adhesive resin. J Dent 73:57–60. https://doi.org/10.1016/j.jdent.2018.04.003

    Article  PubMed  Google Scholar 

  16. Gutiérrez MF, Alegría-Acevedo LF, Méndez-Bauer L, Bermudez J, Dávila-Sánchez A, Buvinic S, Hernández-Moya N, Reis A, Loguercio AD, Farago PV, Martin J, Fernández E (2019) Biological, mechanical and adhesive properties of universal adhesives containing zinc and copper nanoparticles. J Dent 82:45–55. https://doi.org/10.1016/j.jdent.2019.01.012

    Article  PubMed  Google Scholar 

  17. Vidal ML, Rego GF, Viana GM, Cabral LM, Souza JPB, Silikas N, Schneider LF, Cavalcante LM (2018) Physical and chemical properties of model composites containing quaternary ammonium methacrylates. Dent Mater 34:143–151. https://doi.org/10.1016/j.dental.2017.09.020

    Article  PubMed  Google Scholar 

  18. Chen L, Suh BI, Yang J (2018) Antibacterial dental restorative materials: a review. Am J Dent 31:6b–12b

    PubMed  Google Scholar 

  19. Degrazia FW, Leitune VC, Garcia IM, Arthur RA, Samuel SM, Collares FM (2016) Effect of silver nanoparticles on the physicochemical and antimicrobial properties of an orthodontic adhesive. J Appl Oral Sci 24:404–410. https://doi.org/10.1590/1678-775720160154

    Article  PubMed  PubMed Central  Google Scholar 

  20. Choi H, Kim KJ, Lee DG (2017) Antifungal activity of the cationic antimicrobial polymer-polyhexamethylene guanidine hydrochloride and its mode of action. Fungal Biol 121:53–60. https://doi.org/10.1016/j.funbio.2016.09.001

    Article  PubMed  Google Scholar 

  21. Oulé MK, Quinn K, Dickman M, Bernier AM, Rondeau S, De Moissac D, Boisvert A, Diop L (2012) Akwaton, polyhexamethylene-guanidine hydrochloride-based sporicidal disinfectant: a novel tool to fight bacterial spores and nosocomial infections. J Med Microbiol 61:1421–1427. https://doi.org/10.1099/jmm.0.047514-0

    Article  PubMed  Google Scholar 

  22. Zhou Z, Wei D, Lu Y (2015) Polyhexamethylene guanidine hydrochloride shows bactericidal advantages over chlorhexidine digluconate against ESKAPE bacteria. Biotechnol Appl Biochem 62:268–274. https://doi.org/10.1002/bab.1255

    Article  PubMed  Google Scholar 

  23. Collares FM, Garcia IM, Bohns FR, Motta A, Melo MA, Leitune VCB (2020) Guanidine hydrochloride polymer additive to undertake ultraconservative resin infiltrant against Streptococcus mutans. Eur Polym J 133:109746. https://doi.org/10.1016/j.eurpolymj.2020.109746

    Article  Google Scholar 

  24. Garcia IM, Rodrigues SB, Leitune VCB, Collares FM (2019) Antibacterial, chemical and physical properties of sealants with polyhexamethylene guanidine hydrochloride. Braz Oral Res 33:e019. https://doi.org/10.1590/1807-3107bor-2019.vol33.0019

    Article  PubMed  Google Scholar 

  25. Garcia IM, Rodrigues SB, Rodrigues Gama ME, Branco Leitune VC, Melo MA, Collares FM (2020) Guanidine derivative inhibits C. albicans biofilm growth on denture liner without promote loss of materials’ resistance. Bioact Mater 5:228–232. https://doi.org/10.1016/j.bioactmat.2020.02.007

    Article  PubMed  PubMed Central  Google Scholar 

  26. Garcia IM, Souza VS, Hellriegel C, Scholten JD, Collares FM (2019) Ionic liquid-stabilized titania quantum dots applied in adhesive resin. J Dent Res 98:682–688. https://doi.org/10.1177/0022034519835203

    Article  PubMed  Google Scholar 

  27. Garcia IM, Leitune VC, Kist TL, Takimi A, Samuel SM, Collares FM (2016) Quantum dots as nonagglomerated nanofillers for adhesive resins. J Dent Res 95:1401–1407. https://doi.org/10.1177/0022034516656838

    Article  PubMed  Google Scholar 

  28. Collares FM, Portella FF, Leitune VC, Samuel SM (2013) Discrepancies in degree of conversion measurements by FTIR. Braz Oral Res 27:453–454. https://doi.org/10.1590/s1806-83242013000600002

    Article  PubMed  Google Scholar 

  29. Bendary IM, Garcia IM, Collares FM, Takimi A, Samuel SMW, Leitune VCB (2020) Wollastonite as filler of an experimental dental adhesive. J Dent 102:103472. https://doi.org/10.1016/j.jdent.2020.103472

    Article  PubMed  Google Scholar 

  30. Garcia IM, Souza VS, Souza JD, Visioli F, Leitune VCB, Scholten JD, Collares FM (2020) Zinc-based particle with ionic liquid as a hybrid filler for dental adhesive resin. J Dent 102:103477. https://doi.org/10.1016/j.jdent.2020.103477

    Article  PubMed  Google Scholar 

  31. Cuppini M, Garcia IM, de Souza VS, Zatta KC, Visioli F, Leitune VCB, Guterres SS, Scholten JD, Collares FM (2021) Ionic liquid-loaded microcapsules doped into dental resin infiltrants. Bioact Mater 6:2667–2675. https://doi.org/10.1016/j.bioactmat.2021.02.002

    Article  PubMed  PubMed Central  Google Scholar 

  32. Martini Garcia I, Jung Ferreira C, de Souza VS, Castelo Branco Leitune V, Samuel SMW, de Souza Balbinot G, de Souza da Motta A, Visioli F, Damiani Scholten J, Mezzomo Collares F (2019) Ionic liquid as antibacterial agent for an experimental orthodontic adhesive. Dent Mater 35:1155–1165. https://doi.org/10.1016/j.dental.2019.05.010

    Article  PubMed  Google Scholar 

  33. Garcia IM, Leitune VCB, Arthur RA, Nunes J, Visioli F, Giovarruscio M, Sauro S, Collares FM (2020) Chemical, mechanical and biological properties of an adhesive resin with alkyl trimethyl ammonium bromide-loaded halloysite nanotubes. J Adhes Dent 22:399–407. https://doi.org/10.3290/j.jad.a44871

    Article  PubMed  Google Scholar 

  34. Habib E, Wang R, Zhu XX (2017) Monodisperse silica-filled composite restoratives mechanical and light transmission properties. Dent Mater 33:280–287. https://doi.org/10.1016/j.dental.2016.12.008

    Article  PubMed  Google Scholar 

  35. Leitune VC, Collares FM, Takimi A, de Lima GB, Petzhold CL, Bergmann CP, Samuel SM (2013) Niobium pentoxide as a novel filler for dental adhesive resin. J Dent 41:106–113. https://doi.org/10.1016/j.jdent.2012.04.022

    Article  PubMed  Google Scholar 

  36. Gaglianone LA, Lima AF, Gonçalves LS, Cavalcanti AN, Aguiar FH, Marchi GM (2012) Mechanical properties and degree of conversion of etch-and-rinse and self-etch adhesive systems cured by a quartz tungsten halogen lamp and a light-emitting diode. J Mech Behav Biomed Mater 12:139–143. https://doi.org/10.1016/j.jmbbm.2012.01.018

    Article  PubMed  Google Scholar 

  37. Ferracane JL (2006) Hygroscopic and hydrolytic effects in dental polymer networks. Dent Mater 22:211–222. https://doi.org/10.1016/j.dental.2005.05.005

    Article  PubMed  Google Scholar 

  38. Collares FM, Ogliari FA, Zanchi CH, Petzhold CL, Piva E, Samuel SMW (2011) Influence of 2-hydroxyethyl methacrylate concentration on polymer network of adhesive resin. J Adhes Dent 13:125–129. https://doi.org/10.3290/j.jad.a18781

    Article  PubMed  Google Scholar 

  39. Schneider LF, Moraes RR, Cavalcante LM, Sinhoreti MA, Correr-Sobrinho L, Consani S (2008) Cross-link density evaluation through softening tests: effect of ethanol concentration. Dent Mater 24:199–203. https://doi.org/10.1016/j.dental.2007.03.010

    Article  PubMed  Google Scholar 

  40. Schulz H, Schimmoeller B, Pratsinis SE, Salz U, Bock T (2008) Radiopaque dental adhesives: dispersion of flame-made Ta2O5/SiO2 nanoparticles in methacrylic matrices. J Dent 36:579–587. https://doi.org/10.1016/j.jdent.2008.04.010

    Article  PubMed  Google Scholar 

  41. Rodrigues SB, Collares FM, Leitune VC, Schneider LF, Ogliari FA, Petzhold CL, Samuel SM (2015) Influence of hydroxyethyl acrylamide addition to dental adhesive resin. Dent Mater 31:1579–1586. https://doi.org/10.1016/j.dental.2015.10.005

    Article  PubMed  Google Scholar 

  42. Van Meerbeek B, Peumans M, Poitevin A, Mine A, Van Ende A, Neves A, De Munck J (2010) Relationship between bond-strength tests and clinical outcomes. Dent Mater 26:e100–e121. https://doi.org/10.1016/j.dental.2009.11.148

    Article  PubMed  Google Scholar 

  43. Shono Y, Terashita M, Shimada J, Kozono Y, Carvalho RM, Russell CM, Pashley DH (1999) Durability of resin-dentin bonds. J Adhes Dent 1:211–218

    PubMed  Google Scholar 

  44. Andre CB, Rosalen PL, Galvao LCC, Fronza BM, Ambrosano GMB, Ferracane JL, Giannini M (2017) Modulation of Streptococcus mutans virulence by dental adhesives containing anti-caries agents. Dent Mater 33:1084–1092. https://doi.org/10.1016/j.dental.2017.07.006

    Article  PubMed  Google Scholar 

  45. de Carvalho MFF, Leijôto-Lannes ACN, Rodrigues MCN, Nogueira LC, Ferraz NKL, Moreira AN, Yamauti M, Zina LG, Magalhães CS (2018) Viability of bovine teeth as a substrate in bond strength tests: a systematic review and meta-analysis. J Adhes Dent 20:471–479. https://doi.org/10.3290/j.jad.a41636

    Article  PubMed  Google Scholar 

  46. de Menezes LR, da Silva EO, Maurat da Rocha LV, Ferreira Barbosa I, Rodrigues Tavares M (2019) The use of clays for chlorhexidine controlled release as a new perspective for longer durability of dentin adhesion. J Mater Sci Mater Med 30:132. https://doi.org/10.1007/s10856-019-6344-5

    Article  PubMed  Google Scholar 

  47. Zhou ZX, Wei DF, Guan Y, Zheng AN, Zhong JJ (2010) Damage of Escherichia coli membrane by bactericidal agent polyhexamethylene guanidine hydrochloride: micrographic evidences. J Appl Microbiol 108:898–907. https://doi.org/10.1111/j.1365-2672.2009.04482.x

    Article  PubMed  Google Scholar 

  48. Oulé MK, Azinwi R, Bernier AM, Kablan T, Maupertuis AM, Mauler S, Nevry RK, Dembélé K, Forbes L, Diop L (2008) Polyhexamethylene guanidine hydrochloride-based disinfectant: a novel tool to fight meticillin-resistant Staphylococcus aureus and nosocomial infections. J Med Microbiol 57:1523–1528. https://doi.org/10.1099/jmm.0.2008/003350-0

    Article  PubMed  Google Scholar 

  49. Lee JH, Yu IJ (2017) Human exposure to polyhexamethylene guanidine phosphate from humidifiers in residential settings: cause of serious lung disease. Toxicol Ind Health 33:835–842. https://doi.org/10.1177/0748233717724983

    Article  PubMed  Google Scholar 

  50. van Tonder A, Joubert AM, Cromarty AD (2015) Limitations of the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay when compared to three commonly used cell enumeration assays. BMC Res Notes 8:47. https://doi.org/10.1186/s13104-015-1000-8

    Article  PubMed  PubMed Central  Google Scholar 

  51. International Organization for Standardization (2009) ISO 10993-5:2009. Biological evaluation of medical devices — Part 5: Tests for in vitro cytotoxicity.1-34.

  52. Lin NJ (2017) Biofilm over teeth and restorations: what do we need to know? Dent Mater 33:667–680. https://doi.org/10.1016/j.dental.2017.03.003

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) for the scholarship of L.B.S.

Funding

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

Author information

Authors and Affiliations

Authors

Contributions

L.B.S. contributed to the formal analysis, investigation, writing — original draft preparation. I.M.G. contributed to the conception, formal analysis, investigation, visualization, writing — review and editing. F.V. contributed to formal analysis, investigation. F.M.C. contributed to the conception, formal analysis, supervision, investigation. V.C.B.L contributed to conception, investigation, formal analysis, supervision, visualization, writing — review and editing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Vicente Castelo Branco Leitune.

Ethics declarations

Ethics approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. The study was approved by the Local Ethical Committee of the Federal University of Rio Grande do Sul.

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silvestrin, L.B., Garcia, I.M., Visioli, F. et al. Physicochemical and biological properties of experimental dental adhesives doped with a guanidine-based polymer: an in vitro study. Clin Oral Invest 26, 3627–3636 (2022). https://doi.org/10.1007/s00784-021-04332-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-021-04332-6

Keywords

Navigation