Skip to main content

Advertisement

Log in

Effect of finishing/polishing techniques and aging on topography, C. albicans adherence, and flexural strength of ultra-translucent zirconia: an in situ study

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objective

To investigate the influence of different finishing/polishing techniques and in situ aging on the flexural strength (σ), surface roughness, and Candida albicans adherence of 5 mol% yttria-stabilized zirconia (ultratranslucent zirconia).

Materials and methods

A total of 120 zirconia bars (Prettau Anterior, Zirkonzahn) with dimensions of 8 × 2 × 0.5 mm were divided into 8 groups (n = 15) according to two factors: “in situ aging” (non-aged and aged (A)) and “finishing/polishing” (control (C), diamond rubber polishing (R), coarse grit diamond bur abrasion (B), and coarse grit diamond bur abrasion + diamond rubber polishing (BR)). Half of the samples from each group were subjected to a 60-day in situ aging by fixing the bars into cavities prepared in the posterior region of the base of complete or partial dentures of 15 patients. The samples were then subjected to the mini flexural (σ) test (1 mm/min). A total of 40 zirconia blocks (5 × 5 × 2 mm) were prepared and subjected to roughness (Ra) analyses and fungal adherence and complementary analyses (X-ray diffraction (XRD) and scanning electron microscopy (SEM)). The data of mean σ (MPa) and roughness Ra (μm) were statistically analyzed by two-way and one-way ANOVA, respectively, and Tukey’s test. The Weibull analysis was performed for σ data. The fungal adhesion (Log CFU/mL) data were analyzed by Kruskal–Wallis tests.

Results

For flexural resistance, the “finishing/polishing” factor was statistically significant (P = 0.0001); however, the “in situ aging” factor (P = 0.4458) was not significant. The non-aged (507.3 ± 115.7 MPa) and aged (487.6 ± 118.4 MPa) rubber polishing groups exhibited higher mean σ than the other techniques. The non-aged (260.2 ± 43.3 MPa) and aged (270.1 ± 48.8 MPa) bur abrasion groups presented lower σ. The coarse-grit diamond bur abrasion group (1.82 ± 0.61 µm) presented the highest roughness value (P = 0.001). Cell adhesion was not different among groups (P = 0.053). Group B presented the most irregular surface and the highest roughness Ra of 0.61 m.

Conclusions

The finishing of ultratranslucent zirconia might be preferably done with a diamond rubber polisher. Moreover, the protocols used did not interfere with Candida albicans adhesion.

Clinical relevance

Coarse-grit diamond burs might be avoided for finishing ultratranslucent monolithic zirconia, which might be preferably performed with a diamond rubber polisher.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Denry I, Kelly JR (2008) State of the art of zirconia for dental applications. Dent Mater 24:299–307. https://doi.org/10.1016/j.dental.2007.05.007

    Article  PubMed  Google Scholar 

  2. Zhang Y, Lawn BR (2018) Novel zirconia materials in dentistry. J Dent Res 97:140–147. https://doi.org/10.1177/0022034517737483

    Article  PubMed  Google Scholar 

  3. Zhang F, Inokoshi M, Batuk M et al (2016) Strength, toughness and aging stability of highly-translucent Y-TZP ceramics for dental restorations. Dent Mater 32:e327–e337. https://doi.org/10.1016/j.dental.2016.09.025

    Article  PubMed  Google Scholar 

  4. Mao L, Kaizer MR, Zhao M et al (2018) Graded ultra-translucent zirconia (5Y-PSZ) for strength and functionalities. J Dent Res 97:1222–1228. https://doi.org/10.1177/0022034518771287

    Article  PubMed  PubMed Central  Google Scholar 

  5. Carrabba M, Keeling AJ, Aziz A et al (2017) Translucent zirconia in the ceramic scenario for monolithic restorations: a flexural strength and translucency comparison test. J Dent 60:70–76. https://doi.org/10.1016/j.jdent.2017.03.002

    Article  PubMed  Google Scholar 

  6. Kwon SJ, Lawson NC, McLaren EE et al (2018) Comparison of the mechanical properties of translucent zirconia and lithium disilicate. J Prosthet Dent 120:132–137. https://doi.org/10.1016/j.prosdent.2017.08.004

    Article  PubMed  Google Scholar 

  7. Souza R, Barbosa F, Araújo G et al (2018) Ultrathin monolithic zirconia veneers: reality or future? Report of a clinical case and one-year follow-up. Oper Dent 43:3–11. https://doi.org/10.2341/16-350-t

    Article  PubMed  PubMed Central  Google Scholar 

  8. Stawarczyk B, Keul C, Eichberger M et al (2017) Three generations of zirconia: from veneered to monolithic. Part I. Quintessence Int 48:369–380. https://doi.org/10.3290/j.qi.a38057

    Article  PubMed  Google Scholar 

  9. Zhang Y (2014) Making yttria-stabilized tetragonal zirconia translucent. Dent Mater 30:1195–1203. https://doi.org/10.1016/j.dental.2014.08.375

    Article  PubMed  PubMed Central  Google Scholar 

  10. Camposilvan E, Leone R, Gremillard L et al (2018) Aging resistance, mechanical properties and translucency of different yttria-stabilized zirconia ceramics for monolithic dental crown applications. Dent Mater 34:879–890. https://doi.org/10.1016/j.dental.2018.03.006

    Article  PubMed  Google Scholar 

  11. Kolakarnprasert N, Kaizer MR, Kim DK et al (2019) New multi-layered zirconias: composition, microstructure and translucency. Dent Mater 35:797–806. https://doi.org/10.1016/j.dental.2019.02.017

    Article  PubMed  PubMed Central  Google Scholar 

  12. Pereira GKR, Guilardi LF, Dapieve KS et al (2018) Mechanical reliability, fatigue strength and survival analysis of new polycrystalline translucent zirconia ceramics for monolithic restorations. J Mech Behav Biomed Mater 85:57–65. https://doi.org/10.1016/j.jmbbm.2018.05.029

    Article  PubMed  Google Scholar 

  13. Hatanaka GR, Polli GS, Adabo GL (2020) The mechanical behavior of high-translucent monolithic zirconia after adjustment and finishing procedures and artificial aging. J Prosthet Dent 123:330–337. https://doi.org/10.1016/j.prosdent.2018.12.013

    Article  PubMed  Google Scholar 

  14. Kaizer MR, Kolakarnprasert N, Rodrigues C et al (2020) Probing the interfacial strength of novel multi-layer zirconias. Dent Mater 36:60–67. https://doi.org/10.1016/j.dental.2019.10.008

    Article  PubMed  Google Scholar 

  15. Yan J, Kaizer MR, Zhang Y (2018) Load-bearing capacity of lithium disilicate and ultra-translucent zirconias. J Mech Behav Biomed Mater 88:170–175. https://doi.org/10.1016/j.jmbbm.2018.08.023

    Article  PubMed  PubMed Central  Google Scholar 

  16. Vila-Nova TEL, Carvalho IGH, Moura DMD et al (2020) Effect of finishing/polishing techniques and low temperature degradation on the surface topography, phase transformation and flexural strength of ultra-translucent ZrO2 ceramic. Dent Mater 36:e126–e139. https://doi.org/10.1016/j.dental.2020.01.004

    Article  PubMed  PubMed Central  Google Scholar 

  17. Dal Piva A, Contreras L, Ribeiro FC et al (2018) Monolithic ceramics: effect of finishing techniques on surface properties, bacterial adhesion and cell viability. Oper Dent 43:315–325. https://doi.org/10.2341/17-011-l

    Article  Google Scholar 

  18. Lee DH, Mai HN, Thant PP et al (2019) Effects of different surface finishing protocols for zirconia on surface roughness and bacterial biofilm formation. J Adv Prosthodont 11:41–47. https://doi.org/10.4047/jap.2019.11.1.41

    Article  PubMed  PubMed Central  Google Scholar 

  19. Go H, Park H, Lee J et al (2019) Effect of various polishing burs on surface roughness and bacterial adhesion in pediatric zirconia crowns. Dent Mater J 38:311–316. https://doi.org/10.4012/dmj.2018-106

    Article  PubMed  Google Scholar 

  20. Muñoz EM, Longhini D, Antonio SG et al (2017) The effects of mechanical and hydrothermal aging on microstructure and biaxial flexural strength of an anterior and a posterior monolithic zirconia. J Dent 63:94–102. https://doi.org/10.1016/j.jdent.2017.05.021

    Article  PubMed  Google Scholar 

  21. Miragaya LM, Guimarães RB, Souza ROA et al (2017) Effect of intra-oral aging on T→M phase transformation, microstructure, and mechanical properties of Y-TZP dental ceramics. J Mech Behav Biomed Mater 72:14–21. https://doi.org/10.1016/j.jmbbm.2017.04.014

    Article  PubMed  Google Scholar 

  22. Veríssimo AH, Moura DMD, Dal Piva AMO, Bottino MA et al (2020) Effect of different repair methods on the bond strength of resin composite to CAD/CAM materials and microorganisms adhesion: an in situ study. J Dent 93: 103266 In Press. https://doi.org/10.1016/j.jdent.2019.103266

  23. Zupancic Cepic L, Dvorak G, Piehslinger E et al (2020) In vitro adherence of Candida albicans to zirconia surfaces. Oral Dis 26:1072–1080. https://doi.org/10.1111/odi.13319

    Article  PubMed  Google Scholar 

  24. Al-Fouzan AF, Al-Mejrad LA, Albarrag AM et al (2017) Adherence of Candida to complete denture surfaces in vitro: a comparison of conventional and CAD/CAM complete dentures. J Adv Prosthodont 9:402–408. https://doi.org/10.4047/jap.2017.9.5.402

    Article  PubMed  PubMed Central  Google Scholar 

  25. Cavalcanti YW, Wilson M, Lewis M et al (2016) Modulation of Candida albicans virulence by bacterial biofilms on titanium surfaces. Biofouling 32(2):123–134. https://doi.org/10.1080/08927014.2015.1125472

    Article  PubMed  Google Scholar 

  26. Garvie RC, Nicholson PS (1972) Phase analysis in zirconia systems. J Am Ceram Soc 55:303–305. https://doi.org/10.1111/j.1151-2916.1972.tb11290.x

    Article  Google Scholar 

  27. Toraya H, Yoshimura M, Somiya S et al (1984) Calibration curve for quantitative analysis of the monoclinic-tetragonal ZrO2 system by X-ray diffraction. J Am Ceram Soc 67:C-119-C–121. https://doi.org/10.1111/j.1151-2916.1984.tb19715.x

    Article  Google Scholar 

  28. Souza ROA, Valandro LF, Melo RM et al (2013) Air-particle abrasion on zirconia ceramic using different protocols: effects on biaxial flexural strength after cyclic loading, phase transformation and surface topography. J Mech Behav Biomed Mater 26(2013):155–163. https://doi.org/10.1016/j.jmbbm.2013.04.018

    Article  PubMed  Google Scholar 

  29. Kim JW, Covel NS, Guess PC, Rekow ED, Zhang Y (2010) Concerns of hydrothermal degradation in CAD/CAM Zirconia. J Dent Res 89(1):91–95

    Article  Google Scholar 

  30. Alrabiah M, Alshagroud RS, Alsahhaf A et al (2019) Presence of Candida species in the subgingival oral biofilm of patients with peri-implantitis. Clin Implant Dent Relat Res 21(4):781–785. https://doi.org/10.1111/cid.12760

    Article  PubMed  Google Scholar 

  31. Alsahhaf A, Al-Aali KA, Alshagroud RS et al (2019) Comparison of yeast species in the subgingival oral biofilm of individuals with type 2 diabetes and peri-implantitis and individuals with peri-implantitis without diabetes. J Periodontol 90(12):1383–1389. https://doi.org/10.1002/JPER.19-0091

    Article  PubMed  Google Scholar 

  32. Urzúa B, Hermosilla G, Gamonal J et al (2008) Yeast diversity in the oral microbiota of subjects with periodontitis: Candida albicans and Candida dubliniensis colonize the periodontal pockets. Med Mycol 46(8):783–793. https://doi.org/10.1080/13693780802060899

    Article  PubMed  Google Scholar 

  33. Canabarro A, Valle C, Farias MR et al (2013) Association of subgingival colonization of Candida albicans and other yeasts with severity of chronic periodontitis. J Periodontal Res 48(4):428–432. https://doi.org/10.1111/jre.12022

    Article  PubMed  Google Scholar 

  34. De-La-Torre J, Quindós G, Marcos-Arias C et al (2018) Oral Candida colonization in patients with chronic periodontitis. Is there any relationship? Rev Iberoam Micol 35(3):134–139. https://doi.org/10.1016/j.riam.2018.03.005

    Article  PubMed  Google Scholar 

  35. Suresh Unniachan A, KrishnavilasomJayakumari N, Sethuraman S (2020) Association between Candida species and periodontal disease: a systematic review. Curr Med Mycol 6(2):63–68. https://doi.org/10.18502/CMM.6.2.3420

    Article  PubMed  PubMed Central  Google Scholar 

  36. Karygianni L, Jähnig A, Schienle S et al (2013) Initial bacterial adhesion on different yttria-stabilized tetragonal zirconia implant surfaces in vitro. Materials (Basel) 6:5659–5674. https://doi.org/10.3390/ma6125659

    Article  Google Scholar 

Download references

Acknowledgements

This study was based on a Master of Science thesis submitted to the Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil. The authors thank Vagner (São Paulo, Brazil) and LTN Laboratories (Rio Grande do Norte, Brazil) for providing the ceramic materials used in the study.

Funding

This study was partly funded by the Coordination for the Development of Higher Education Personnel—Brazil (CAPES)—Grant Code 001. YZ would like to thank the United States National Institutes of Health/National Institute of Dental and Craniofacial Research for their support (grants No. R01 DE026772 and R01 DE026279).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo Othávio de Assunção e Souza.

Ethics declarations

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the Research Ethics Committee—HUOL (No. 3.133.187).

Informed consent

Informed consent was obtained from all individual participants included in the study.

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Carvalho, I.H.G., da Silva, N.R., Vila-Nova, T.E.L. et al. Effect of finishing/polishing techniques and aging on topography, C. albicans adherence, and flexural strength of ultra-translucent zirconia: an in situ study. Clin Oral Invest 26, 889–900 (2022). https://doi.org/10.1007/s00784-021-04068-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-021-04068-3

Keywords

Navigation