Skip to main content

Advertisement

Log in

Dentifrices or gels containing MMP inhibitors prevent dentine loss: in situ studies

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

Evaluate the effect of dentifrices or gels containing MMP inhibitors on dentine loss in situ.

Materials and methods

Acrylic palatal appliances containing bovine dentine blocks were divided into two rows, corresponding to the groups erosion (ERO) and erosion associated with abrasion (ERO+ABR). For ERO, the appliances were immersed in a cola drink for 5 min, 4 times/day, while for ERO+ABR, the blocks were brushed for 15 sec with a dentifrice slurry after the second and third erosive challenges. Ten volunteers took part in study 1 (S1), where the dentifrices evaluated contained 1100 ppm fluoride as NaF, 0.61% green tea extract, or 0.012% chlorhexidine digluconate. Thirteen volunteers participated in study 2 (S2), in which the treatment was performed only once (1 min) with gels containing 400 μM EGCG (EGCG400), 0.012% chlorhexidine, 1 mM FeSO4, 1.23% F (NaF), placebo, or received no treatment. Dentine loss was analyzed by profilometry (μm).

Results

Regarding S1, ERO+ABR induced significantly higher dentine loss compared with ERO and all dentifrices tested led to significantly lower dentine loss when compared with placebo. For S2, regardless of the conditions or times of evaluation, gels containing EGCG, CHX, or FeSO4 led to significantly less wear compared with the other groups.

Conclusion

Both dentifrices and gels containing MMP inhibitors significantly reduced dentine loss.

Clinical relevance

Dentifrices and gels containing MMP inhibitors are able to increase the protection against dentine wear, although gels have a better effect when compared with fluoride gel, lasting up to 10 days after a single application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Schlueter N, Amaechi BT, Bartlett D, Buzalaf MAR, Carvalho TS, Ganss C et al (2019) Terminology of erosive tooth wear: consensus report of a workshop organized by the ORCA and the Cariology Research Group of the IADR. Caries Res:1–5. https://doi.org/10.1159/000503308

  2. Arnold WH, Heidt BA, Kuntz S, Naumova EA (2014) Effects of fluoridated milk on root dentin remineralization. PLoS One 9(8):e104327. https://doi.org/10.1371/journal.pone.0104327

    Article  PubMed  PubMed Central  Google Scholar 

  3. Shahbaz U, Quadir F, Hosein T (2016) Determination of prevalence of dental erosion in 12 - 14 years school children and its relationship with dietary habits. J Coll Physicians Surg Pak 26(7):553–556

    PubMed  Google Scholar 

  4. Lussi A, Carvalho TS (2015) The future of fluorides and other protective agents in erosion prevention. Caries Res 49(Suppl 1):18–29. https://doi.org/10.1159/0003808865

    Article  PubMed  Google Scholar 

  5. Huysmans MC, Young A, Ganss C (2014) The role of fluoride in erosion therapy. Monogr Oral Sci 25:230–243. https://doi.org/10.1159/000360555

    Article  PubMed  Google Scholar 

  6. Buzalaf MA, Magalhaes AC, Wiegand A (2014) Alternatives to fluoride in the prevention and treatment of dental erosion. Monogr Oral Sci 25:244–252. https://doi.org/10.1159/0003605577

    Article  PubMed  Google Scholar 

  7. Hannig M, Hannig C (2014) The pellicle and erosion. Monogr Oral Sci 25:206–214. https://doi.org/10.1159/000360376

    Article  PubMed  Google Scholar 

  8. Vukosavljevic D, Custodio W, Buzalaf MA, Hara AT, Siqueira WL (2014) Acquired pellicle as a modulator for dental erosion. Arch Oral Biol 59(6):631–638. https://doi.org/10.1016/j.archoralbio.2014.02.002

    Article  PubMed  Google Scholar 

  9. Santiago AC, Khan ZN, Miguel MC, Gironda CC, Soares-Costa A, Pelá VT, Leite AL, Edwardson JM, Buzalaf MAR, Henrique-Silva F (2017) A new sugarcane cystatin strongly binds to dental enamel and reduces erosion. J Dent Res. 96(9):1051–1057. https://doi.org/10.1177/0022034517712981

    Article  PubMed  Google Scholar 

  10. Joiner A, Elofsson UM, Arnebrant T (2006) Adsorption of chlorhexidine and black tea onto in vitro salivary pellicles, as studied by ellipsometry. Eur J Oral Sci 114:337–342

    Article  Google Scholar 

  11. Joiner A, Muller D, Elofsson UM, Arnebrant T (2004) Ellipsometry analysis of the in vitro adsorption of tea polyphenols onto salivary pellicles. Eur J Oral Sci 112:510–515

    Article  Google Scholar 

  12. Rehage M, Delius J, Hofmann T, Hannig M (2017) Oral astringent stimuli alter the enamel pellicle's ultrastructure as revealed by electron microscopy. J Dent 63:21–29. https://doi.org/10.1016/j.jdent.2017.05.011

    Article  PubMed  Google Scholar 

  13. Hertel S, Pötschke S, Basche S, Delius J, Hoth-Hannig W, Hannig M, Hannig C (2017) Effect of tannic acid on the protective properties of the in situ formed pellicle. Caries Res 51:34–45. https://doi.org/10.1159/000451036

    Article  PubMed  Google Scholar 

  14. de Souza-E-Silva CM, da Silva Ventura TM, de Pau L, la Silva Cassiano, de Lima Leite A, Buzalaf MAR (2017) Effect of gels containing chlorhexidine or epigallocatechin-3-gallate on the protein composition of the acquired enamel pellicle. Arch Oral Biol 82:92–98. https://doi.org/10.1016/j.archoralbio.2017.05.024

    Article  PubMed  Google Scholar 

  15. Pelá VT, Prakki A, Wang L, Ventura TMS, de Souza e Silva CM, Cassiano LPS, Brianezzi LFF, Leite AL, Buzalaf MAR (2019) The influence of fillers and protease inhibitors in experimental resins in the protein profile of the acquired pellicle formed in situ on enamel-resin specimens. Arch Oral Biol 108:104527. https://doi.org/10.1016/j.archoralbio.2019.104527

    Article  PubMed  Google Scholar 

  16. Buzalaf MA, Charone S, Tjaderhane L (2015) Role of host-derived proteinases in dentine caries and erosion. Caries Res 49(Suppl 1):30–37. https://doi.org/10.1159/00038088517

    Article  PubMed  Google Scholar 

  17. Klont B, ten Cate JM (1991) Remineralization of bovine incisor root lesions in vitro: the role of the collagenous matrix. Caries Res 25(1):39–45

    Article  Google Scholar 

  18. Kleter GA, Damen JJ, Everts V, Niehof J, Ten Cate JM (1994) The influence of the organic matrix on demineralization of bovine root dentin in vitro. J Dent Res 73(9):1523–1529

    Article  Google Scholar 

  19. Ganss C, Schlueter N, Hardt M, von Hinckeldey J, Klimek J (2007) Effects of toothbrushing on eroded dentine. Eur J Oral Sci 115(5):390–396. https://doi.org/10.1111/j.1600-0722.2007.00466.x

    Article  PubMed  Google Scholar 

  20. Makela M, Salo T, Uitto VJ, Larjava H (1994) Matrix metalloproteinases (MMP-2 and MMP-9) of the oral cavity: cellular origin and relationship to periodontal status. J Dent Res 73(8):1397–1406

    Article  Google Scholar 

  21. Scaffa PM, Vidal CM, Barros N, Gesteira TF, Carmona AK, Breschi L et al (2012) Chlorhexidine inhibits the activity of dental cysteine cathepsins. J Dent Res 91(4):420–425. https://doi.org/10.1177/0022034511435329

    Article  PubMed  Google Scholar 

  22. Magalhaes AC, Wiegand A, Rios D, Hannas A, Attin T, Buzalaf MA (2009) Chlorhexidine and green tea extract reduce dentin erosion and abrasion in situ. J Dent 37(12):994–998. https://doi.org/10.1016/j.jdent.2009.08.007

    Article  PubMed  Google Scholar 

  23. Kato MT, Leite AL, Hannas AR, Oliveira RC, Pereira JC, Tjaderhane L, Buzalaf MA (2010) Effect of iron on matrix metalloproteinase inhibition and on the prevention of dentine erosion. Caries Res 44(3):309–316. https://doi.org/10.1159/000315932

    Article  PubMed  Google Scholar 

  24. Kato MT, Leite AL, Hannas AR, Buzalaf MA (2010) Gels containing MMP inhibitors prevent dental erosion in situ. J Dent Res 89(5):468–472. https://doi.org/10.1177/0022034510363248

    Article  PubMed  Google Scholar 

  25. Kato MT, Magalhaes AC, Rios D, Hannas AR, Attin T, Buzalaf MA (2009) Protective effect of green tea on dentin erosion and abrasion. J Appl Oral Sci 17(6):560–564

    Article  Google Scholar 

  26. Hannas AR, Kato MT, Cardoso Cde A, Magalhaes AC, Pereira JC, Tjaderhane L, Buzalaf MA (2016) Preventive effect of toothpastes with MMP inhibitors on human dentine erosion and abrasion in vitro. J Appl Oral Sci 24(1):61–66. https://doi.org/10.1590/1678-775720150289

    Article  PubMed  PubMed Central  Google Scholar 

  27. Delecrode TR, Siqueira WL, Zaidan FC et al (2015) Exposure to acids changes the proteomic of acquired dentine pellicle. J Dent 43:583–588

    Article  Google Scholar 

  28. Cassiano LP, Charone S, Souza JG, Leizico LC, Pessan JP, Magalhaes AC, Buzalaf MA (2016) Protective effect of whole and fat-free fluoridated milk, applied before or after acid challenge, against dental erosion. Caries Res 50(2):111–116. https://doi.org/10.1159/000444024

    Article  PubMed  Google Scholar 

  29. Wiegand A, Attin T (2011) Design of erosion/abrasion studies--insights and rational concepts. Caries Res 45(Suppl 1):53–59. https://doi.org/10.1159/00032594630

    Article  PubMed  Google Scholar 

  30. Kato MT, Leite AL, Hannas AR, Calabria MP, Magalhaes AC, Pereira JC, Buzalaf MA (2012) Impact of protease inhibitors on dentin matrix degradation by collagenase. J Dent Res 91(12):1119–1123. https://doi.org/10.1177/0022034512455801

    Article  PubMed  Google Scholar 

  31. Rios D, Honorio HM, Magalhaes AC et al (2006) Effect of salivary stimulation on erosion of human and bovine enamel subjected or not to subsequent abrasion: an in situ/ex vivo study. Caries Res 40:218–223

    Article  Google Scholar 

  32. Ganss C, Lussi A, Scharmann I, Weigelt T, Hardt M, Klimek J, Schlueter N (2009) Comparison of calcium analysis, longitudinal microradiography and profilometry for the quantitative assessment of erosion in dentine. Caries Res 43:422–429. https://doi.org/10.1159/000252975

    Article  PubMed  Google Scholar 

  33. Schlueter N, Hara A, Shellis RP, Ganss C (2011) Methods for the measurement and characterization of erosion in enamel and dentine. Caries Res 45(Suppl 1):13–23. https://doi.org/10.1159/000326819

    Article  PubMed  Google Scholar 

  34. Magalhaes AC, Wiegand A, Buzalaf MA (2014) Use of dentifrices to prevent erosive tooth wear: harmful or helpful? Braz Oral Res 28 Spec No:1-6. https://doi.org/10.1590/S1806-83242013005000035

  35. Magalhaes AC, Wiegand A, Rios D, Buzalaf MA, Lussi A (2011) Fluoride in dental erosion. Monogr Oral Sci 22:158–170. https://doi.org/10.1159/000325167

    Article  PubMed  Google Scholar 

  36. Ganss C, Klimek J, Starck C (2004) Quantitative analysis of the impact of the organic matrix on the fluoride effect on erosion progression in human dentine using longitudinal microradiography. Arch Oral Biol 49:931–935

    Article  Google Scholar 

  37. Kato MT, Bolanho A, Zarella BL, Salo T, Tjäderhane L, Buzalaf MA (2014) Sodium fluoride inhibits MMP-2 and MMP-9. J Dent Res 93(1):74–77. https://doi.org/10.1177/0022034513511820

    Article  PubMed  PubMed Central  Google Scholar 

  38. Attin T, Knofel S, Buchalla W, Tutuncu R (2001) In situ evaluation of different remineralization periods to decrease brushing abrasion of demineralized enamel. Caries Res 35(3):216–222

    Article  Google Scholar 

  39. Attin T, Siegel S, Buchalla W, Lennon AM, Hannig C, Becker K (2004) Brushing abrasion of softened and remineralised dentin: an in situ study. Caries Res 38(1):62–66. https://doi.org/10.1159/000073922

    Article  PubMed  Google Scholar 

  40. Ganss C, Lussi A, Sommer N, Klimek J, Schlueter N (2010) Efficacy of fluoride compounds and stannous chloride as erosion inhibitors in dentine. Caries Res 44(3):248–252. https://doi.org/10.1159/000314671

    Article  PubMed  Google Scholar 

  41. Hemingway CA, Shellis RP, Parker DM, Addy M, Barbour ME (2008) Inhibition of hydroxyapatite dissolution by ovalbumin as a function of pH, calcium concentration, protein concentration and acid type. Caries Res 42:348–353. https://doi.org/10.1159/000151440

    Article  PubMed  Google Scholar 

  42. Saeki K, Hayakawa S, Nakano S et al (2018) In vitro and in silico studies of the molecular interactions of epigallocatechin-3-O-gallate (EGCG) with proteins that explain the health benefits of green tea. Molecules 23(6). https://doi.org/10.3390/molecules23061295

  43. Zimmermann R, Delius J, Friedrichs J, Stehl S, Hofmann T, Hannig C, Rehage M, Werner C, Hannig M (2019) Impact of oral astringent stimuli on surface charge and morphology of the protein-rich pellicle at the tooth-saliva interphase. Colloids Surf B Biointerfaces 174:451–458. https://doi.org/10.1016/j.colsurfb.2018.11.028

    Article  PubMed  Google Scholar 

Download references

Funding

This study was funded by CNPq (Grant numbers 557863/2008-2 and 300615/2007-8) and FAPESP (Proc. 07/08389-3, 07/04209-0, 08/09857-3, and 07/54618-4). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: MARB, LT, ACM, MTK. Performed the experiments: MTK, ARH, PAN, LPSC. Analyzed the data: MARB, ACM. Wrote the paper: CABC, MARB.

Corresponding author

Correspondence to Marília Afonso Rabelo Buzalaf.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kato, M.T., Hannas, A.R., Cardoso, C.d.B. et al. Dentifrices or gels containing MMP inhibitors prevent dentine loss: in situ studies. Clin Oral Invest 25, 2183–2190 (2021). https://doi.org/10.1007/s00784-020-03530-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-020-03530-y

Keywords

Navigation