Skip to main content
Log in

Effect of NaF, AmF, KF gels and NaF toothpaste combined with a saliva substitute on dentin lesions in vitro

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objective

The aim of the present in vitro study was to evaluate the remineralizing effects of NaF, AmF, KF gels and NaF toothpaste in combination with a potentially demineralizing saliva substitute (Glandosane; pH = 5.1) being widely used in Germany.

Methods

In each of 120 dentin specimens, three artificial lesions were created. One lesion was covered for analysis of pre-demineralization (ΔZB). Treatments during pH cycling (3 × 1 h demineralization/day [pH = 5.0] and 3 × 3 h Glandosane/day; 12 h 100%humidity) were as follows: no treatment (NT), application (5 min,2×/day) of 12.500 ppm F [pH = 6.04] (NaF-gel1), 12.500 ppm F [pH = 7.34] (NaF-gel2), 12.500 ppm F [pH = 5.82] (AmF-gel), 1450 ppm F [pH = 7.35] (KF-gel), and 5000 ppm F [pH = 8.14]; (NaF-TP) for 7 days (E1). Subsequently, from each specimen, one lesion was covered, while the remaining lesion was cycled for another 7 days (E2). Differences in integrated mineral loss (ΔΔZE1/ΔΔZE2) were calculated between values before and after pH cycling.

Results

Mean (95%CI) ΔZB was 3851 (3762;3939) vol% × μm. Except for NaF-gel2 and NaF-TP, specimens of all other groups further demineralized. Only NaF-gel2 induced a significant gain in mineral content (p ≤ 0.004; paired t test). Significant differences in the change of mineral loss were found between NT and all fluoride groups for both ΔΔZE1 and for ΔΔZE2 (p < 0.05, Bonferroni post hoc test). However, only NaF-gel2 and NaF-TP induced remineralization.

Conclusion

Under the in vitro conditions chosen, all fluoride agents could significantly hamper the adverse effects of a demineralizing saliva substitute.

Clinical significance

In combination with a demineralizing saliva substitute, slight mineral gain was only observed for neutral NaF-gel2 and 5000 ppm F toothpaste.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ahadian H, Yassaei S, Bouzarjomehri F, Ghaffari Targhi M, Kheirollahi K (2017) Oral complications of the Oromaxillofacial area radiotherapy. Asian Pac J Cancer Prev 18:721–725. https://doi.org/10.22034/APJCP.2017.18.3.721

    Article  PubMed  PubMed Central  Google Scholar 

  2. Atkinson JC, Grisius M, Massey W (2005) Salivary hypofunction and xerostomia: diagnosis and treatment. Dent Clin N Am 49:309–326. https://doi.org/10.1016/j.cden.2004.10.002

    Article  PubMed  Google Scholar 

  3. Almstahl A, Wikstrom M (2003) Electrolytes in stimulated whole saliva in individuals with hyposalivation of different origins. Arch Oral Biol 48:337–344

    Article  PubMed  Google Scholar 

  4. Tschoppe P, Wolgin M, Pischon N, Kielbassa AM (2010) Etiologic factors of hyposalivation and consequences for oral health. Quintessence Int 41:321–333

    PubMed  Google Scholar 

  5. Vissink A, Jansma J, Spijkervet FK, Burlage FR, Coppes RP (2003) Oral sequelae of head and neck radiotherapy. Crit Rev Oral Biol Med 14:199–212

    Article  PubMed  Google Scholar 

  6. Kielbassa AM, Hinkelbein W, Hellwig E, Meyer-Luckel H (2006) Radiation-related damage to dentition. Lancet Oncol 7:326–335. https://doi.org/10.1016/S1470-2045(06)70658-1

    Article  PubMed  Google Scholar 

  7. Vissink A, Burlage FR, Spijkervet FK, Jansma J, Coppes RP (2003) Prevention and treatment of the consequences of head and neck radiotherapy. Crit Rev Oral Biol Med 14:213–225

    Article  PubMed  Google Scholar 

  8. Meyer-Lueckel H, Colfen H, Verch A, Tschoppe P (2010) Effects of carboxymethyl cellulose-based saliva substitutes with varying degrees of saturation with respect to calcium phosphates on artificial enamel lesions. Caries Res 44:127–134. https://doi.org/10.1159/000302901

    Article  PubMed  Google Scholar 

  9. Zimmermann JS, Niehoff P, Wilhelm R, Schneider R, Kovacs G, Kimmig B (1998) Prevention and therapy of acute radiation-related morbidity of the skin and mucosa. II, recommendations of the literature. Strahlenther Onkol 174:193–199

    Article  PubMed  Google Scholar 

  10. Momm F, Volegova-Neher NJ, Schulte-Monting J, Guttenberger R (2005) Different saliva substitutes for treatment of xerostomia following radiotherapy. A prospective crossover study. Strahlenther Onkol 181:231–236. https://doi.org/10.1007/s00066-005-1333-7

    Article  PubMed  Google Scholar 

  11. Zandim-Barcelos DL, Kielbassa AM, Sampaio JE, Tschoppe P (2015) Saliva substitutes in combination with high-fluoride gel on dentin remineralization. Clin Oral Investig 19:289–297. https://doi.org/10.1007/s00784-014-1264-8

    Article  PubMed  Google Scholar 

  12. Tschoppe P, Meyer-Lueckel H (2012) Effects of regular and highly fluoridated toothpastes in combination with saliva substitutes on artificial enamel caries lesions differing in mineral content. Arch Oral Biol 57:931–939. https://doi.org/10.1016/j.archoralbio.2012.02.010

    Article  PubMed  Google Scholar 

  13. Marinho VC, Worthington HV, Walsh T and Chong LY (2015) Fluoride gels for preventing dental caries in children and adolescents. Cochrane Database Syst Rev:CD002280. doi: https://doi.org/10.1002/14651858.CD002280.pub2

  14. Nieuw Amerongen AV, Veerman EC (2003) Current therapies for xerostomia and salivary gland hypofunction associated with cancer therapies. Support Care Cancer 11:226–231. https://doi.org/10.1007/s00520-002-0409-5

    Article  PubMed  Google Scholar 

  15. Tschoppe P, Meyer-Lueckel H (2011) Mineral distribution of artificial dentinal caries lesions after treatment with fluoride agents in combination with saliva substitutes. Arch Oral Biol 56:775–784. https://doi.org/10.1016/j.archoralbio.2011.01.002

    Article  PubMed  Google Scholar 

  16. Tschoppe P, Siegel A, Meyer-Lueckel H (2010) Saliva substitutes in combination with highly concentrated fluorides and brushing: in vitro effects on enamel subsurface lesions. Caries Res 44:571–578. https://doi.org/10.1159/000321656

    Article  PubMed  Google Scholar 

  17. Zandim DL, Tschoppe P, Sampaio JE, Kielbassa AM (2011) Effect of saliva substitutes in combination with fluorides on remineralization of subsurface dentin lesions. Support Care Cancer 19:1143–1149. https://doi.org/10.1007/s00520-010-0924-8

    Article  PubMed  Google Scholar 

  18. Wierichs RJ, Zelck H, Doerfer CE, Appel P, Paris S, Esteves-Oliveira M, Meyer-Lueckel H (2017) Effects of dentifrices differing in fluoride compounds on artificial enamel caries lesions in vitro. Odontology 105:36–45. https://doi.org/10.1007/s10266-016-0233-x

    Article  PubMed  Google Scholar 

  19. Arends J and ten Bosch JJ (1992) Demineralization and remineralization evaluation techniques. J Dent Res 71 Spec No:924–8

  20. Wierichs RJ, Lausch J, Meyer-Lueckel H, Esteves-Oliveira M (2016) Re- and demineralization characteristics of enamel depending on baseline mineral loss and lesion depth in situ. Caries Res 50:141–150. https://doi.org/10.1159/000444537

    Article  PubMed  Google Scholar 

  21. Wierichs RJ, Stausberg S, Lausch J, Meyer-Lueckel H, Esteves-Oliveira M (2018) Caries-preventive effect of NaF, NaF plus TCP, NaF plus CPP-ACP, and SDF varnishes on sound dentin and artificial dentin caries in vitro. Caries Res 52:199–211. https://doi.org/10.1159/000484483

    Article  PubMed  Google Scholar 

  22. Meyer-Lueckel H, Wierichs RJ, Gninka B, Heldmann P, Dorfer CE, Paris S (2015) The effect of various model parameters on enamel caries lesions in a dose-response model in situ. J Dent 43:1261–1267. https://doi.org/10.1016/j.jdent.2015.08.003

    Article  PubMed  Google Scholar 

  23. Esteves-Oliveira M, Santos NM, Meyer-Lueckel H, Wierichs RJ, Rodrigues JA (2017) Caries-preventive effect of anti-erosive and nano-hydroxyapatite-containing toothpastes in vitro. Clin Oral Investig 21:291–300. https://doi.org/10.1007/s00784-016-1789-0

    Article  PubMed  Google Scholar 

  24. Wierichs RJ, Westphal S, Lausch J, Meyer-Lueckel H, Esteves-Oliveira M (2018) Influence of highly concentrated fluoride dentifrices on remineralization characteristics of enamel in vitro. Clin Oral Investig 22:2325–2334. https://doi.org/10.1007/s00784-018-2333-1

    Article  PubMed  Google Scholar 

  25. Wierichs RJ, Kogel J, Lausch J, Esteves-Oliveira M, Meyer-Lueckel H (2017) Effects of self-assembling peptide P11-4, fluorides, and caries infiltration on artificial enamel caries lesions in vitro. Caries Res 51:451–459. https://doi.org/10.1159/000477215

    Article  PubMed  Google Scholar 

  26. ten Cate JM, Exterkate RA, Buijs MJ (2006) The relative efficacy of fluoride toothpastes assessed with pH cycling. Caries Res 40:136–141. https://doi.org/10.1159/000091060

    Article  PubMed  Google Scholar 

  27. ten Cate JM, Buijs MJ, Miller CC, Exterkate RA (2008) Elevated fluoride products enhance remineralization of advanced enamel lesions. J Dent Res 87:943–947. https://doi.org/10.1177/154405910808701019

    Article  PubMed  Google Scholar 

  28. Duckworth RM, Gao XJ (2006) Plaque as a reservoir for active ingredients. Monogr Oral Sci 19:132–149. https://doi.org/10.1159/000090589

    Article  PubMed  Google Scholar 

  29. Wegehaupt FJ, Attin T (2010) The role of fluoride and casein phosphopeptide/amorphous calcium phosphate in the prevention of erosive/abrasive wear in an in vitro model using hydrochloric acid. Caries Res 44:358–363. https://doi.org/10.1159/000316542

    Article  PubMed  Google Scholar 

  30. Yamazaki H, Margolis HC (2008) Enhanced enamel remineralization under acidic conditions in vitro. J Dent Res 87:569–574. https://doi.org/10.1177/154405910808700612

    Article  PubMed  Google Scholar 

  31. Brighenti FL, Delbem AC, Buzalaf MA, Oliveira FA, Ribeiro DB, Sassaki KT (2006) In vitro evaluation of acidified toothpastes with low fluoride content. Caries Res 40:239–244. https://doi.org/10.1159/000092232

    Article  PubMed  Google Scholar 

  32. Alves KM, Pessan JP, Brighenti FL, Franco KS, Oliveira FA, Buzalaf MA, Sassaki KT, Delbem AC (2007) In vitro evaluation of the effectiveness of acidic fluoride dentifrices. Caries Res 41:263–267. https://doi.org/10.1159/000101915

    Article  PubMed  Google Scholar 

  33. Backfolk K, Lagerge S, Rosenholm JB, Eklund D (2002) Aspects on the interaction between sodium carboxymethylcellulose and calcium carbonate and the relationship to specific site adsorption. J Colloid Interface Sci 248:5–12. https://doi.org/10.1006/jcis.2001.8195

    Article  PubMed  Google Scholar 

  34. Altenburger MJ, Schirrmeister JF, Wrbas KT, Klasser M, Hellwig E (2008) Fluoride uptake and remineralisation of enamel lesions after weekly application of differently concentrated fluoride gels. Caries Res 42:312–318. https://doi.org/10.1159/000148164

    Article  PubMed  Google Scholar 

  35. Lennon AM, Pfeffer M, Buchalla W, Becker K, Lennon S, Attin T (2006) Effect of a casein/calcium phosphate-containing tooth cream and fluoride on enamel erosion in vitro. Caries Res 40:154–157. https://doi.org/10.1159/000091063

    Article  PubMed  Google Scholar 

  36. Lagerweij MD, ten Cate JM (2006) Acid susceptibility at various depths of pH-cycled enamel and dentine specimens. Caries Res 40:33–37. https://doi.org/10.1159/000088903

    Article  PubMed  Google Scholar 

  37. Brown WE, Gregory TM, Chow LC (1977) Effects of fluoride on enamel solubility and cariostasis. Caries Res 11(Suppl 1):118–141

    Article  PubMed  Google Scholar 

  38. Lippert F, Juthani K (2015) Fluoride dose-response of human and bovine enamel artificial caries lesions under pH-cycling conditions. Clin Oral Investig 19:1947–1954. https://doi.org/10.1007/s00784-015-1436-1

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was conducted as part of the doctoral thesis of M.K.

Funding

This study was funded by the authors and their institution. Products were not provided by the manufacturers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Johannes Wierichs.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study, formal consent is not required.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Walther, C., Kreibohm, M., Paris, S. et al. Effect of NaF, AmF, KF gels and NaF toothpaste combined with a saliva substitute on dentin lesions in vitro. Clin Oral Invest 23, 2489–2496 (2019). https://doi.org/10.1007/s00784-018-2687-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-018-2687-4

Keywords