Skip to main content

Advertisement

Log in

Biomimetic treatment on dental implants for short-term bone regeneration

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

The main purpose of this work was to assess the short-term bone regenerative potential of new osteoconductive implants. The novelty of the study lies in the analysis of the effectiveness of a novel two-step treatment which combines shot-blasting with a thermo-chemical treatment, at very short times after implant placement in a minipig model.

Materials and methods

Three hundred twenty implants with four different surface treatments, namely bioactivated surfaces, micro-rough grit-blasted, micro-rough acid-etched and smooth as-machined titanium implants were placed into the bone of 20 minipigs. The percent of bone-to-implant contact was determined 3 days, 1, 2, 3 and 10 weeks after implant placement by histomorphometric analysis. Surface composition, topography and wettability of the implant specimens were analysed.

Results

The combination of shot-blasting and thermo-chemical treatment accelerated bone regeneration at early stages in comparison with all other treatments between day 3 and week 3 (p < 0.05). The value of osseointegration attained at week 2 was maintained until the end of the experiment without any significant changes (percent direct contact ≈ 85 %). This was mostly attributed to the ability of these implants to form in vivo a layer of apatitic mineral that coated the implant and could rapidly stimulate bone nucleation and growth from the implant surface.

Conclusions

The surface quality resulting from this treatment on cpTi provided dental implants with a unique ability of rapid bone regeneration and osseointegration.

Clinical relevance

This treatment represents a step forward in the direction of reducing the time prior to implant loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wang HL, Ormianer Z, Palti A (2006) Consensus conference on immediate loading: the single tooth and partial edentulous areas. Impl Dent 15:324–333

    Article  Google Scholar 

  2. Ericsson I, Nilson H, Nilner K (2001) Immediate functional loading of Branemarksingle-tooth implants. A 5-year clinical follow-up. Appl Osseoint Res 2:12–17

    Google Scholar 

  3. Assad A, Hassan S, Shawky Y (2007) Clinical and radiographic evaluation of implant-retained mandibular overdentures with immediate loading. Impl Dent 16:212–218

    Article  Google Scholar 

  4. Gapski R, Wang HL, Mascarenhas P (2003) Critical review of immediate implant loading. Clin Oral Impl Res 14:515–527

    Article  Google Scholar 

  5. Stavropoulos A, Nyengaard JR, Lang NP, Karring T (2006) Immediate loading of single SLA implants: osteotomes vs. drilling. Clin Oral Impl Res 17:35–36

    Article  Google Scholar 

  6. Mcglumphy E, Philips K, Schliephake H, Wang IC, Chacon G, Larsen P (2006) Implant stability in the posterior mandible following an early protocol using the microthread osseospeed fixture. Clin Oral Impl Res 17:102–103

    Article  Google Scholar 

  7. Mangano F, Mangano C, Piatelli A, Iezzi G, Perrotti V (2006) Histologic evaluation of immediately loaded titanium implants. Clin Oral Impl Res 17:52–53

    Article  Google Scholar 

  8. Bernard JP, Belser UC, Martinet JP (1995) Osseointegration of Branemark fixtures using a single-step operating technique. A preliminary prospective one-year study in the edentulous mandible. Clin Oral Impl Res 6:122–129

    Article  Google Scholar 

  9. Chiapasco M, Gatti C (2004) Immediate loading of dental implants placed in revascularized fibula free flaps: a clinical report on 2 consecutive patients. Int J Oral Maxillofac Implants 19:906–912

    PubMed  Google Scholar 

  10. Chaushu G, Chaushu S, Tzohar A (2001) Immediate loading of singletooth implants: immediate versus non-immediate implantation: a clinical report. Int J Oral Maxillofac Implants 16:267–272

    PubMed  Google Scholar 

  11. Spiekermann H, Jansen VK, Richter EJ (1995) A 10-year follow-up study of IMZ and TPS implants in the edentulous mandible using bar retained overdentures. Int J Oral Maxillofac Implants 10:231–243

    PubMed  Google Scholar 

  12. Romanos GE (2003) Treatment of advanced periodontal destruction with immediately loaded implants and simultaneous bone augmentation: a case report. J Periodontol 74:255–261

    Article  PubMed  Google Scholar 

  13. McCarthy C, Patel RR, Wragg PF (2003) Sinus augmentation bone grafts for the provision of dental implants: report of clinical outcome. Int J Oral Maxillofac Implants 18:377–382

    PubMed  Google Scholar 

  14. Degidi M, Piatelli A (2005) 7-year follow-up of 93 immediately loaded titanium dental implants. J Oral Impl 31:25–31

    Article  Google Scholar 

  15. Chiapasco M (2004) Early and immediate restoration and loading of implants in completely edentulous patients. Int J Oral Maxillofac Implants 19(Suppl):76–91

    PubMed  Google Scholar 

  16. Fischer K, Stenberg T (2004) Early loading of ITI implants supporting maxillary full-arch prosthesis: 1-year data of a prospective, randomized study. Int J Oral Maxillofac Implants 19:374–381

    PubMed  Google Scholar 

  17. Jokstad A, Braeffer U, Brunski JB (2003) Quality of dental implants. Int Dent J 53:409–443

    PubMed  Google Scholar 

  18. Calandriello R, Tomatis M, Vallone R (2003) Immediate occlusal loading of single lower molars using Branemark System Wide-Platform TiUnite implants: an interim report of a prospective open-ended clinical multicenter study. Clin Impl Dent Rel Res 5:74–80

    Article  Google Scholar 

  19. Cornelini R, Cangini F, Covani U (2004) Immediate restoration of single tooth implants in mandibular molar sites: a 12-month preliminary report. Int J Oral Maxillofac Implants 19:855–860

    PubMed  Google Scholar 

  20. Roynesdal AK, Amundrud B, Haanaes HR (2001) A comparative clinical investigation of 2 early loaded ITI dental implants supporting an overdenture in the mandible. Int J Oral Maxillofac Implants 16:246–251

    PubMed  Google Scholar 

  21. Rocci A, Martignoni M, Gottlow J (2003) Immediate loading in the maxilla using flapless surgery, implants placed in predetermined positions, and prefabricated provisional restorations: a retrospective 3-year clinical study. Clin Impl Dent Rel Res 5:29–36

    Article  Google Scholar 

  22. Packer ME, Watson RM, Bryant CJ (2000) A comparison of the early postoperative care required by patients treated with single and two-stage surgical techniques for the provision of Branemark implant-supported mandibular overdentures. Eur J Prosth Rest Dent 8:17–21

    Google Scholar 

  23. Kupeyan HK, Shaffner M, Armstrong J (2006) Definitive CAD/CAM-guided prosthesis for immediate loading of bone-grafted maxilla: a case report. Clin Impl Dent Rel Res 8:161–167

    Article  Google Scholar 

  24. Glauser R, Ree A, Lundgren A (2001) Immediate occlusal loading of Branemark implants applied in various jawbone regions: a prospective, 1-year clinical study. Clin Impl Dent Rel Res 3:204–213

    Article  Google Scholar 

  25. Pegueroles M, Aguirre A, Engel E, Pavon G, Gil FJ, Planell JA, Migonney V, Aparicio C (2001) Effect of blasting treatment and Fn coating on MG63 adhesion and differentiation on titanium: a gene expression study using real-time RT-PCR. J Mater Sci Mater Med 22:617–627

    Article  Google Scholar 

  26. Pegueroles M, Aparicio C, Bosio M, Engel E, Gil FJ, Planell JA, Altankov G (2010) Spatial organization of osteoblast fibronectin-matrix on titanium surface—effects of roughness, chemical heterogeneity, and surface free energy. Acta Biomater 6:291–301

    Article  PubMed  Google Scholar 

  27. Boyan BD, Schwartz Z (1999) Modulation of osteogenesis via implant surface design. In: Davies JE (ed) Bone engineering. Em squared Inc., Toronto, Canada, pp 232–239

  28. Buser D (1991) Influence of surface characteristics on bone integration of titanium implants. A histomorphometric study in miniature pigs. J Biomed Mater Res 25:889–902

    Article  PubMed  Google Scholar 

  29. Kokubo T, Kushitani H, Sakka S, Kitsugi T, Yamamuro T (1990) Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic. J Biomed Mater Res 24:721–728

    Article  PubMed  Google Scholar 

  30. Aparicio C, Gil FJ, Planell JA, Engel E (2002) Human ostoeblast proliferation and differentiation on grit-blasted and bioactive titanium for dental applications. J Mater Sci Mater Med 13:1105–1111

    Article  PubMed  Google Scholar 

  31. Aparicio C, Gil FJ, Fonseca C, Barbosa M, Planell JA (2003) Corrosion behaviour of commercially pure titanium shot blasted with different materials and sizes of shot blasted with different materials and sizes of shot particles for dental implant applications. Biomaterials 24:263–273

    Article  PubMed  Google Scholar 

  32. Aparicio C, Gil FJ, Thams U, Munoz F, Padros A, Planell JA (2004) Osseointegration of grit-blasted and bioactive titanium implants: histomorphometry in minipigs. Key Eng Mat 254–2:737–740

    Article  Google Scholar 

  33. Aparicio C, Manero JM, Conde F, Pegueroles M, Planell JA, Vallet-Regí M, Gil FJ (2007) Acceleration of apatite nucleation on microrough bioactive titanium for bone-replacing implants. J Biomed Mater Res 82A:521–529

    Article  Google Scholar 

  34. Kokubo T, Miyaji F, Kim HM (1996) Preparation of bioactive Ti and its alloys via simple chemical surface treatment. J Am Ceram Soc 79:1127–1129

    Article  Google Scholar 

  35. Kokubo T (1997) Bioactive implants. Anales de Química Int Ed 93:49–55

    Google Scholar 

  36. Albrektsson T, Brånemark PI, Hansson BO, Lindström J (1981) Osseointegrated dental implants. Acta Orthop Scand 52:155–170

    Article  PubMed  Google Scholar 

  37. Nogueras J, Gil FJ, Salsench J, Martínez-Gomis J (2004) Roughness and bonding strength of bioactive apatite layer on dental implants. Impl Dent 13:185–189

    Article  Google Scholar 

  38. Thomsen P, Larsson C, Ericsson LE, Sennerby L, Lausmaa J, Kasemo B (1997) Bone response to machined cast titanium implants. J Mater Sci Mater Med 8:653–665

    Article  PubMed  Google Scholar 

  39. Yan WQ, Nakamura T, Kobayashi M, Kim HM, Miyaji F, Kokubo T (1997) Apatite-forming ability of CaO-containing titania. J Biomed Mater Res 37:265–275

    Article  Google Scholar 

  40. Ohtsuki C, Iida H, Hayakawa S, Osaka A (1998) Bioactivity of titanium treated with hydrogen peroxide solutions containing metal chlorides. J Biomed Mater Res 39:141–152

    Article  Google Scholar 

  41. Letankov G, Groth T (1996) Fibronectin matrix formation by human fibroblasts on surfaces varying in wettability. J Biomat Sci Pol Ed 8:299–310

    Google Scholar 

  42. Groessnerschreiber B, Tuan RS (1992) Enhanced extracellular-matrix production and mineralization by osteoblasts cultured on titanium surfaces in vitro. J Cell Sci 101:209–211

    Google Scholar 

  43. Brugge PJ, Torensma R, De Ruijter JE, Figdor CG, Jansen JA (2002) Modulation of integrin expression on rat bone marrow cells by substrates with different surface characteristics. Tissue Eng 8:615–626

    Article  PubMed  Google Scholar 

  44. Kieswetter K, Schwartz Z, Hummert TW, Cochran DL, Simpson J, Dean DD, Boyan BD (1996) Surface roughness modulates the local production of growth factors and cytokines by osteoblast-like MG-63 cells. J Biomed Mater Res 32:55–63

    Article  PubMed  Google Scholar 

  45. Martin JY, Schwartz Z, Hummert TW, Schraub DM, Simpson J, Lankford J, Dean DD, Cochran DL, Boyan B (1995) Effect of titanium surface-roughness on proliferation, differentiation, and protein-synthesis of human osteoblast-like cells (Mg63). J Biomed Mater Res 29:389–401

    Article  PubMed  Google Scholar 

  46. Altankov G, Grinnell F, Groth T (1996) Studies on the biocompatibility of materials: fibroblast reorganization of substratum-bound fibronectin on surfaces varying in wettability. J Biomed Mater Res 30:385–391

    Article  PubMed  Google Scholar 

  47. Tzoneva R, Groth T, Altankov G, Paul D (2002) Remodeling of fibrinogen by endothelial cells in dependence on fibronectin matrix assembly. Effect of substratum wettability. J Mater Sci Mater Med 13:1235–1244

    Article  PubMed  Google Scholar 

  48. Altankov G, Groth T (1996) Fibronectin matrix formation and the biocompatibility of materials. J Mater Sci Mater Med 7:425–429

    Article  Google Scholar 

  49. Altankov G, Richau K, Groth T (2003) The role of surface zeta potential and substratum chemistry for regulation of dermal fibroblasts interaction. Material Werkst 34:1120–1128

    Article  Google Scholar 

  50. Faucheux N, Schweiss R, Lutzow K, Werner C, Groth T (2004) Self-assembled monolayers with different terminating groups as model substrates for cell adhesion studies. Biomaterials 25:2721–2730

    Article  PubMed  Google Scholar 

  51. Garcia AJ (2005) Get a grip: integrins in cell–biomaterial interactions. Biomaterials 26:7525–7529

    Article  PubMed  Google Scholar 

  52. Lebaron RG, Athanasiou KA (2000) Extracellular matrix cell adhesion peptides: functional applications in orthopedic materials. Tissue Eng 6:85–103

    Article  PubMed  Google Scholar 

  53. Nordahl J, Mengarelliwidholm S, Hultenby K, Reinholt FP (1995) Ultrastructural immunolocalization of fibronectin in epiphyseal and metaphyseal bone of young-rats. Calcif Tissue Int 57:442–449

    Article  PubMed  Google Scholar 

  54. Vogel V, Baneyx G (2003) The tissue engineering puzzle: a molecular perspective. Ann Rev Biomed Eng 5:441–463

    Article  Google Scholar 

  55. Globus RK, Doty SB, Lull JC, Holmuhamedov E, Humphries MJ, Damsky CH (1998) Fibronectin is a survival factor for differentiated osteoblasts. J Cell Sci 111:1385–1393

    PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the Ministry of Science of the Spanish Government (MAT2009-13547 Project), the governments of Andorra, Aragon and Catalonia (CTP 2011 Project) and the Klockner-UPC Chair for their financial support. The authors do not have any conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Javier Gil.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gil, F.J., Manzanares, N., Badet, A. et al. Biomimetic treatment on dental implants for short-term bone regeneration. Clin Oral Invest 18, 59–66 (2014). https://doi.org/10.1007/s00784-013-0953-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-013-0953-z

Keywords

Navigation