Skip to main content
Log in

Dinuclear gold(I) complexes based on carbene and diphosphane ligands: bis[2-(dicyclohexylphosphano)ethyl]amine complex inhibits the proteasome activity, decreases stem cell markers and spheroid viability in lung cancer cells

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Three new dinuclear gold(I) complexes (13) containing a carbene (1,3-Bis(2,6-di-isopropylphenyl)imidazol-2-ylidene (IPr)) and diphosphane ligands [bis(1,2-diphenylphosphano)ethane (Dppe), bis(1,3-diphenylphosphano)propane (Dppp) and bis[2-(dicyclohexylphosphano)ethyl]amine (DCyPA)], were synthesized and characterized by elemental analysis and, ESI–MS, mid FT-IR and NMR spectroscopic methods. The structures of complexes 2 and 3 were determined by X-ray crystallography, which revealed that the complexes are dinuclear having gold(I) ions linearly coordinated. The anticancer activities of the complexes (1–3) were evaluated in lung (A549), breast (MC-F7), prostate (PC-3), osteosarcoma (MG-63) and ovarian (A2780 and A2780cis) cancer models. Growth inhibition by the new complexes was higher than cisplatin in all cell lines tested. The mechanism of action of complex 3 was investigated in A549 cells using 2-dimensional (2D) models and 3D-multicellular tumor spheroids. Treatment of A549 cells with complex 3 caused: the induction of apoptosis and the generation of reactive oxygen species; the cell cycle arrest in the G0/G1 phase; the inhibition of both the proteasome and the NF-kB activity; the down-regulation of lung cancer stem cell markers (NOTCH1, CD133, ALDH1 and CD44). Complex 3 was more active than cisplatin also in 3D models of A549 lung cancer cells.

Grahical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Lu Y, Ma X, Chang X et al (2022) Recent development of gold(I) and gold(III) complexes as therapeutic agents for cancer diseases. Chem Soc Rev 51:5518–5556. https://doi.org/10.1039/D1CS00933H

    Article  CAS  PubMed  Google Scholar 

  2. Porchia M, Pellei M, Marinelli M et al (2018) New insights in Au-NHCs complexes as anticancer agents. Eur J Med Chem 146:709–746. https://doi.org/10.1016/j.ejmech.2018.01.065

    Article  CAS  PubMed  Google Scholar 

  3. Tialiou A, Chin J, Keppler BK, Reithofer MR (2022) Current developments of N-heterocyclic carbene Au(I)/Au(III) complexes toward cancer treatment. Biomedicines 10:1417. https://doi.org/10.3390/biomedicines10061417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yang Z, Jiang G, Xu Z et al (2020) Advances in alkynyl gold complexes for use as potential anticancer agents. Coord Chem Rev 423:213492. https://doi.org/10.1016/j.ccr.2020.213492

    Article  CAS  Google Scholar 

  5. Bertrand B, Casini A (2014) A golden future in medicinal inorganic chemistry: the promise of anticancer gold organometallic compounds. Dalton Trans 43:4209–4219. https://doi.org/10.1039/C3DT52524D

    Article  CAS  PubMed  Google Scholar 

  6. Yeo CI, Ooi KK, Tiekink ERT (2018) Gold-based medicine: a paradigm shift in anti-cancer therapy? Molecules 23:1410. https://doi.org/10.3390/molecules23061410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mirzadeh N, Reddy TS, Bhargava SK (2019) Advances in diphosphine ligand-containing gold complexes as anticancer agents. Coord Chem Rev 388:343–359. https://doi.org/10.1016/j.ccr.2019.02.027

    Article  CAS  Google Scholar 

  8. Fernández-Moreira V, Herrera RP, Gimeno MC (2019) Anticancer properties of gold complexes with biologically relevant ligands. Pure Appl Chem 91:247–269. https://doi.org/10.1515/pac-2018-0901

    Article  CAS  Google Scholar 

  9. Nobili S, Mini E, Landini I et al (2010) Gold compounds as anticancer agents: chemistry, cellular pharmacology, and preclinical studies. Med Res Rev 30:550–580. https://doi.org/10.1002/med.20168

    Article  CAS  PubMed  Google Scholar 

  10. Sulaiman AAA, Casagrande N, Borghese C et al (2022) Design, synthesis, and preclinical activity in ovarian cancer models of new phosphanegold(I)-N-heterocyclic carbene complexes. J Med Chem 65:14424–14440. https://doi.org/10.1021/acs.jmedchem.2c00737

    Article  CAS  PubMed  Google Scholar 

  11. Moreno-Alcántar G, Picchetti P, Casini A (2023) Gold complexes in anticancer therapy: from new design principles to particle-based delivery systems. Angew Chem Int Ed Engl. https://doi.org/10.1002/anie.202218000

    Article  PubMed  Google Scholar 

  12. Filho MS, Scattolin T, Dao P et al (2021) Straightforward synthetic route to gold(I)-thiolato glycoconjugate complexes bearing NHC ligands (NHC = N-heterocyclic carbene) and their promising anticancer activity. New J Chem 45:9995–10001. https://doi.org/10.1039/D1NJ02117F

    Article  Google Scholar 

  13. Oberkofler J, Aikman B, Bonsignore R et al (2020) Exploring the reactivity and biological effects of heteroleptic n-heterocyclic carbene gold(I)-alkynyl complexes. Eur J Inorg Chem 2020:1040–1051. https://doi.org/10.1002/ejic.201901043

    Article  CAS  Google Scholar 

  14. Dominelli B, Jakob CHG, Oberkofler J et al (2020) Mechanisms underlying the cytotoxic activity of syn/anti-isomers of dinuclear Au(I) NHC complexes. Eur J Med Chem 203:112576. https://doi.org/10.1016/j.ejmech.2020.112576

    Article  CAS  PubMed  Google Scholar 

  15. Schmidt C, Albrecht L, Balasupramaniam S et al (2019) A gold(i) biscarbene complex with improved activity as a TrxR inhibitor and cytotoxic drug: comparative studies with different gold metallodrugs. Metallomics 11:533–545. https://doi.org/10.1039/c8mt00306h

    Article  CAS  PubMed  Google Scholar 

  16. Zhang C, Maddelein M-L, Wai-Yin Sun R et al (2018) Pharmacomodulation on Gold-NHC complexes for anticancer applications - is lipophilicity the key point? Eur J Med Chem 157:320–332. https://doi.org/10.1016/j.ejmech.2018.07.070

    Article  CAS  PubMed  Google Scholar 

  17. Bertrand B, Stefan L, Pirrotta M et al (2014) Caffeine-based gold(I) N-heterocyclic carbenes as possible anticancer agents: synthesis and biological properties. Inorg Chem 53:2296–2303. https://doi.org/10.1021/ic403011h

    Article  CAS  PubMed  Google Scholar 

  18. Gulzar S, Ammara U, Abid Z et al (2022) Synthesis, in vitro anticancer activity and reactions with biomolecule of gold(I)-NHC carbene complexes. J Mol Struct 1255:132482. https://doi.org/10.1016/j.molstruc.2022.132482

    Article  CAS  Google Scholar 

  19. Sen S, Li Y, Lynch V et al (2019) Expanding the biological utility of bis-NHC gold(I) complexes through post synthetic carbamate conjugation. Chem Commun 55:10627–10630. https://doi.org/10.1039/C9CC05635A

    Article  CAS  Google Scholar 

  20. Estrada-Ortiz N, Guarra F, de Graaf IAM et al (2017) Anticancer gold N-heterocyclic carbene complexes: a comparative in vitro and ex vivo study. ChemMedChem 12:1429–1435. https://doi.org/10.1002/cmdc.201700316

    Article  CAS  PubMed  Google Scholar 

  21. Weaver J, Gaillard S, Toye C et al (2011) Cytotoxicity of gold(I) N-heterocyclic carbene complexes assessed by using human tumor cell lines. Chemistry 17:6620–6624. https://doi.org/10.1002/chem.201100321

    Article  CAS  PubMed  Google Scholar 

  22. Rubbiani R, Salassa L, de Almeida A et al (2014) Cytotoxic gold(I) N-heterocyclic carbene complexes with phosphane ligands as potent enzyme inhibitors. ChemMedChem 9:1205–1210. https://doi.org/10.1002/cmdc.201400056

    Article  CAS  PubMed  Google Scholar 

  23. Rubbiani R, Schuh E, Meyer A et al (2013) TrxR inhibition and antiproliferative activities of structurally diverse gold N-heterocyclic carbene complexes. Med Chem Commun 4:942–948. https://doi.org/10.1039/C3MD00076A

    Article  CAS  Google Scholar 

  24. Rubbiani R, Can S, Kitanovic I et al (2011) Comparative in vitro evaluation of N-heterocyclic carbene gold(I) complexes of the benzimidazolylidene type. J Med Chem 54:8646–8657. https://doi.org/10.1021/jm201220n

    Article  CAS  PubMed  Google Scholar 

  25. Liu W, Bensdorf K, Proetto M et al (2011) NHC gold halide complexes derived from 4,5-diarylimidazoles: synthesis, structural analysis, and pharmacological investigations as potential antitumor agents. J Med Chem 54:8605–8615. https://doi.org/10.1021/jm201156x

    Article  CAS  PubMed  Google Scholar 

  26. Miyamoto Y, Aggarwal S, Celaje JJA et al (2021) Gold(I) phosphine derivatives with improved selectivity as topically active drug leads to overcome 5-nitroheterocyclic drug resistance in trichomonas vaginalis. J Med Chem 64:6608–6620. https://doi.org/10.1021/acs.jmedchem.0c01926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ang KP, Chan PF, Hamid RA (2021) Antiproliferative activity exerted by tricyclohexylphosphanegold(I) n-mercaptobenzoate against MCF-7 and A2780 cell lines: the role of p53 signaling pathways. Biometals 34:141–160. https://doi.org/10.1007/s10534-020-00269-7

    Article  CAS  PubMed  Google Scholar 

  28. Ang KP, Chan PF, Hamid RA (2021) Induction of apoptosis on ovarian adenocarcinoma cells, A2780 by tricyclohexylphosphanegold (I) mercaptobenzoate derivatives via intrinsic and extrinsic pathways. J Biol Inorg Chem 26:833–853. https://doi.org/10.1007/s00775-021-01892-6

    Article  CAS  PubMed  Google Scholar 

  29. Landini I, Massai L, Cirri D et al (2020) Structure-activity relationships in a series of auranofin analogues showing remarkable antiproliferative properties. J Inorg Biochem 208:111079. https://doi.org/10.1016/j.jinorgbio.2020.111079

    Article  CAS  PubMed  Google Scholar 

  30. Marzo T, Cirri D, Gabbiani C et al (2017) Auranofin, Et3PAuCl, and Et3PAuI are highly cytotoxic on colorectal cancer cells: a chemical and biological study. ACS Med Chem Lett 8:997–1001. https://doi.org/10.1021/acsmedchemlett.7b00162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Reddy TS, Privér SH, Mirzadeh N, Bhargava SK (2017) Anti-cancer gold(I) phosphine complexes: cyclic trimers and tetramers containing the P-Au-P moiety. J Inorg Biochem 175:1–8. https://doi.org/10.1016/j.jinorgbio.2017.06.010

    Article  CAS  PubMed  Google Scholar 

  32. Chrysouli MP, Banti CN, Kourkoumelis N et al (2018) Chloro(triphenylphosphine)gold(I) a forefront reagent in gold chemistry as apoptotic agent for cancer cells. J Inorg Biochem 179:107–120. https://doi.org/10.1016/j.jinorgbio.2017.11.004

    Article  CAS  PubMed  Google Scholar 

  33. Celegato M, Borghese C, Casagrande N et al (2015) Preclinical activity of the repurposed drug auranofin in classical Hodgkin lymphoma. Blood 126:1394–1397. https://doi.org/10.1182/blood-2015-07-660365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sulaiman AAA, Ahmad S, Hashimi SM et al (2022) Novel dinuclear gold(I) complexes containing bis(diphenylphosphano)alkanes and (biphenyl-2-yl)(di-tert-butyl)phosphane: synthesis, structural characterization and anticancer activity. New J Chem 46:16821–16831. https://doi.org/10.1039/D2NJ01680J

    Article  CAS  Google Scholar 

  35. Abogosh AK, Alghanem MK, Ahmad S et al (2022) A novel cyclic dinuclear gold(I) complex induces anticancer activity via an oxidative stress-mediated intrinsic apoptotic pathway in MDA-MB-231 cancer cells. Dalton Trans 51:2760–2769. https://doi.org/10.1039/d1dt03546k

    Article  CAS  PubMed  Google Scholar 

  36. Sulaiman AAA, Alhoshani A, Ahmad S et al (2021) Synthesis, anticancer activity and apoptosis induction of gold(I) complexes containing tris(o-methoxyphenyl)phosphane. Inorg Chim Acta 527:120567. https://doi.org/10.1016/j.ica.2021.120567

    Article  CAS  Google Scholar 

  37. Sulaiman AA, Alhoshani A, As Sobeai HM et al (2020) Anticancer activity and X-ray structure determination of gold(I) complexes of 2-(diphenylphosphanyl)-1-aminocyclohexane. Polyhedron 183:114532. https://doi.org/10.1016/j.poly.2020.114532

    Article  CAS  Google Scholar 

  38. Le HV, Babak MV, Ehsan MA et al (2020) Highly cytotoxic gold(i)-phosphane dithiocarbamate complexes trigger an ER stress-dependent immune response in ovarian cancer cells. Dalton Trans 49:7355–7363. https://doi.org/10.1039/d0dt01411g

    Article  CAS  PubMed  Google Scholar 

  39. Goetzfried SK, Gallati CM, Cziferszky M et al (2020) N-heterocyclic carbene gold(I) complexes: mechanism of the ligand scrambling reaction and their oxidation to gold(III) in aqueous solutions. Inorg Chem 59:15312–15323. https://doi.org/10.1021/acs.inorgchem.0c02298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Crudden CM, Allen DP (2004) Stability and reactivity of N-heterocyclic carbene complexes. Coord Chem Rev 248:2247–2273. https://doi.org/10.1016/j.ccr.2004.05.013

    Article  CAS  Google Scholar 

  41. Dos Santos N, Comprido L, Klein JEMN, Knizia G et al (2015) The stabilizing effects in gold carbene complexes. Angew Chem Int Ed Engl 54:10336–10340. https://doi.org/10.1002/anie.201412401

    Article  CAS  Google Scholar 

  42. Gamberi T, Pratesi A, Messori L, Massai L (2021) Proteomics as a tool to disclose the cellular and molecular mechanisms of selected anticancer gold compounds. Coord Chem Rev 438:213905. https://doi.org/10.1016/j.ccr.2021.213905

    Article  CAS  Google Scholar 

  43. Holenya P, Can S, Rubbiani R et al (2014) Detailed analysis of pro-apoptotic signaling and metabolic adaptation triggered by a N-heterocyclic carbene-gold(I) complex. Metallomics 6:1591–1601. https://doi.org/10.1039/c4mt00075g

    Article  CAS  PubMed  Google Scholar 

  44. Hickey JL, Ruhayel RA, Barnard PJ et al (2008) Mitochondria-targeted chemotherapeutics: the rational design of gold(I) N-heterocyclic carbene complexes that are selectively toxic to cancer cells and target protein selenols in preference to thiols. J Am Chem Soc 130:12570–12571. https://doi.org/10.1021/ja804027j

    Article  CAS  PubMed  Google Scholar 

  45. Bindoli A, Rigobello MP, Scutari G et al (2009) Thioredoxin reductase: a target for gold compounds acting as potential anticancer drugs. Coord Chem Rev 253:1692–1707. https://doi.org/10.1016/j.ccr.2009.02.026

    Article  CAS  Google Scholar 

  46. Cheng Y, Qi Y (2017) Current progresses in metal-based anticancer complexes as mammalian TrxR inhibitors. Anticancer Agents Med Chem 17:1046–1069. https://doi.org/10.2174/1871520617666170213150217

    Article  CAS  PubMed  Google Scholar 

  47. Rubbiani R, Kitanovic I, Alborzinia H et al (2010) Benzimidazol-2-ylidene gold(i) complexes are thioredoxin reductase inhibitors with multiple antitumor properties. J Med Chem 53:8608–8618. https://doi.org/10.1021/jm100801e

    Article  CAS  PubMed  Google Scholar 

  48. Li X, Huang Q, Long H et al (2019) A new gold(I) complex-Au(PPh3)PT is a deubiquitinase inhibitor and inhibits tumor growth. EBioMedicine 39:159–172. https://doi.org/10.1016/j.ebiom.2018.11.047

    Article  PubMed  Google Scholar 

  49. Liu N, Guo Z, Xia X et al (2019) Auranofin lethality to prostate cancer includes inhibition of proteasomal deubiquitinases and disrupted androgen receptor signaling. Eur J Pharmacol 846:1–11. https://doi.org/10.1016/j.ejphar.2019.01.004

    Article  CAS  PubMed  Google Scholar 

  50. Cirri D, Schirmeister T, Seo E-J et al (2020) Antiproliferative properties of a few auranofin-related gold(I) and silver(I) complexes in leukemia cells and their interferences with the ubiquitin proteasome system. Molecules 25:E4454. https://doi.org/10.3390/molecules25194454

    Article  CAS  Google Scholar 

  51. Micale N, Schirmeister T, Ettari R et al (2014) Selected cytotoxic gold compounds cause significant inhibition of 20S proteasome catalytic activities. J Inorg Biochem 141:79–82. https://doi.org/10.1016/j.jinorgbio.2014.08.001

    Article  CAS  PubMed  Google Scholar 

  52. Sulaiman AAA, Kalia N, Bhatia G et al (2019) Cytotoxic effects of gold(I) complexes against colon, cervical and osteo carcinoma cell lines: a mechanistic approach. New J Chem 43:14565–14574. https://doi.org/10.1039/C9NJ02063B

    Article  CAS  Google Scholar 

  53. Altaf M, Monim-ul-Mehboob M, Seliman AAA et al (2014) Synthesis, X-ray structures, spectroscopic analysis and anticancer activity of novel gold(I) carbene complexes. J Organomet Chem 765:68–79. https://doi.org/10.1016/j.jorganchem.2014.04.029

    Article  CAS  Google Scholar 

  54. Seliman AAA, Altaf M, Odewunmi NA et al (2017) Synthesis, X-ray structure, DFT calculations and anticancer activity of a selenourea coordinated gold(I)-carbene complex. Polyhedron 137:197–206. https://doi.org/10.1016/j.poly.2017.08.003

    Article  CAS  Google Scholar 

  55. Seliman AAA, Altaf M, Onawole AT et al (2017) Synthesis, X-ray structures and anticancer activity of gold(I)-carbene complexes with selenones as co-ligands and their molecular docking studies with thioredoxin reductase. J Organomet Chem 848:175–183. https://doi.org/10.1016/j.jorganchem.2017.07.034

    Article  CAS  Google Scholar 

  56. Seliman AAA, Altaf M, Onawole AT et al (2018) Synthesis, X-ray structure and cytotoxicity evaluation of carbene-based gold(I) complexes of selenones. Inorg Chim Acta 476:46–53. https://doi.org/10.1016/j.ica.2018.01.032

    Article  CAS  Google Scholar 

  57. Srinivasa Reddy T, Privér SH, Rao VV et al (2018) Gold(i) and gold(iii) phosphine complexes: synthesis, anticancer activities towards 2D and 3D cancer models, and apoptosis inducing properties. Dalton Trans 47:15312–15323. https://doi.org/10.1039/c8dt01724g

    Article  CAS  PubMed  Google Scholar 

  58. Sheldrick GM (2008) A short history of SHELX. Acta Cryst A 64:112–122. https://doi.org/10.1107/S0108767307043930

    Article  CAS  Google Scholar 

  59. Stoe and Cie (2009) X-Area & X-RED32. Stoe & Cie GmbH, Darmstadt, Germany

  60. Spek AL (2009) Structure validation in chemical crystallography. Acta Cryst D 65:148–155. https://doi.org/10.1107/S090744490804362X

    Article  CAS  Google Scholar 

  61. Macrae CF, Bruno IJ, Chisholm JA et al (2008) Mercury CSD 2.0 – new features for the visualization and investigation of crystal structures. J Appl Cryst 41:466–470. https://doi.org/10.1107/S0021889807067908

    Article  CAS  Google Scholar 

  62. Chou TC, Talalay P (1984) Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 22:27–55. https://doi.org/10.1016/0065-2571(84)90007-4

    Article  CAS  PubMed  Google Scholar 

  63. Feoktistova M, Geserick P, Leverkus M (2016) Crystal violet assay for determining viability of cultured cells. Cold Spring Harb Protoc. https://doi.org/10.1101/pdb.prot087379

    Article  PubMed  Google Scholar 

  64. Casagrande N, Celegato M, Borghese C et al (2014) Preclinical activity of the liposomal cisplatin lipoplatin in ovarian cancer. Clin Cancer Res 20:5496–5506. https://doi.org/10.1158/1078-0432.CCR-14-0713

    Article  CAS  PubMed  Google Scholar 

  65. Casagrande N, Borghese C, Agostini F et al (2021) In ovarian cancer multicellular spheroids, platelet releasate promotes growth, expansion of ALDH+ and CD133+ cancer stem cells, and protection against the cytotoxic effects of cisplatin, carboplatin and paclitaxel. Int J Mol Sci 22:3019. https://doi.org/10.3390/ijms22063019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Schaefer WP, Marsh RE, McCleskey TM, Gray HB (1991) A luminescent gold complex: bis-μ-[bis(dicyclohexylphosphino)ethane-P, P’]-digold bis(hexafluorophosphate). Acta Cryst C 47:2553–2556. https://doi.org/10.1107/S0108270191007618

    Article  Google Scholar 

  67. Matthews HK, Bertoli C, de Bruin RAM (2022) Cell cycle control in cancer. Nat Rev Mol Cell Biol 23:74–88. https://doi.org/10.1038/s41580-021-00404-3

    Article  CAS  PubMed  Google Scholar 

  68. Altaf M, Casagrande N, Mariotto E et al (2019) potent in vitro and in vivo anticancer activity of new bipyridine and bipyrimidine gold (III) dithiocarbamate derivatives. Cancers (Basel) 11:E474. https://doi.org/10.3390/cancers11040474

    Article  CAS  Google Scholar 

  69. Milacic V, Chen D, Ronconi L et al (2006) A novel anticancer gold(III) dithiocarbamate compound inhibits the activity of a purified 20S proteasome and 26S proteasome in human breast cancer cell cultures and xenografts. Cancer Res 66:10478–10486. https://doi.org/10.1158/0008-5472.CAN-06-3017

    Article  CAS  PubMed  Google Scholar 

  70. Cattaruzza L, Fregona D, Mongiat M et al (2011) Antitumor activity of gold(III)-dithiocarbamato derivatives on prostate cancer cells and xenografts. Int J Cancer 128:206–215. https://doi.org/10.1002/ijc.25311

    Article  CAS  PubMed  Google Scholar 

  71. Chen X, Yang Q, Xiao L et al (2017) Metal-based proteasomal deubiquitinase inhibitors as potential anticancer agents. Cancer Metastasis Rev 36:655–668. https://doi.org/10.1007/s10555-017-9701-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Tundo GR, Sbardella D, Santoro AM et al (2020) The proteasome as a druggable target with multiple therapeutic potentialities: Cutting and non-cutting edges. Pharmacol Ther 213:107579. https://doi.org/10.1016/j.pharmthera.2020.107579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Mao Y (2021) Structure, dynamics and function of the 26S proteasome. In: Harris JR, Marles-Wright J (eds) Macromolecular protein complexes III: structure and function. Springer International Publishing, Cham, pp 1–151

    Google Scholar 

  74. Maharjan S, Oku M, Tsuda M et al (2014) Mitochondrial impairment triggers cytosolic oxidative stress and cell death following proteasome inhibition. Sci Rep 4:5896. https://doi.org/10.1038/srep05896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Nunes AT, Annunziata CM (2017) Proteasome inhibitors: structure and function. Semin Oncol 44:377–380. https://doi.org/10.1053/j.seminoncol.2018.01.004

    Article  CAS  PubMed  Google Scholar 

  76. Xing Y, Lin Y, Zhang Y et al (2021) Novel cytoplasmic lncRNA IKBKBAS promotes lung adenocarcinoma metastasis by upregulating IKKβ and consequential activation of NF-κB signaling pathway. Cell Death Dis 12:1004. https://doi.org/10.1038/s41419-021-04304-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Koerner L, Schmiel M, Yang T-P et al (2023) NEMO- and RelA-dependent NF-κB signaling promotes small cell lung cancer. Cell Death Differ 30:938–951. https://doi.org/10.1038/s41418-023-01112-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zheng Y, Wang L, Yin L et al (2022) Lung cancer stem cell markers as therapeutic targets: an update on signaling pathways and therapies. Front Oncol 12:873994. https://doi.org/10.3389/fonc.2022.873994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Walcher L, Kistenmacher A-K, Suo H et al (2020) Cancer stem cells-origins and biomarkers: perspectives for targeted personalized therapies. Front Immunol 11:1280. https://doi.org/10.3389/fimmu.2020.01280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wang Y, Jiang M, Du C et al (2018) Utilization of lung cancer cell lines for the study of lung cancer stem cells. Oncol Lett 15:6791–6798. https://doi.org/10.3892/ol.2018.8265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Dianat-Moghadam H, Mahari A, Salahlou R et al (2022) Immune evader cancer stem cells direct the perspective approaches to cancer immunotherapy. Stem Cell Res Ther 13:150. https://doi.org/10.1186/s13287-022-02829-9

    Article  PubMed  PubMed Central  Google Scholar 

  82. Prabavathy D, Swarnalatha Y, Ramadoss N (2018) Lung cancer stem cells-origin, characteristics and therapy. Stem Cell Investig 5:6 https://doi.org/10.21037/sci.2018.02.01

  83. Zanoni M, Bravaccini S, Fabbri F, Arienti C (2022) Emerging roles of aldehyde dehydrogenase isoforms in anti-cancer therapy resistance. Front Med (Lausanne) 9:795762. https://doi.org/10.3389/fmed.2022.795762

    Article  PubMed  Google Scholar 

  84. Madsen KL, Gerke O, Høilund-Carlsen PF, Olsen BB (2022) Cisplatin-Resistant CD44+ lung cancer cells are sensitive to auger electrons. Int J Mol Sci 23:7131. https://doi.org/10.3390/ijms23137131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Nishino M, Ozaki M, Hegab AE et al (2017) Variant CD44 expression is enriching for a cell population with cancer stem cell-like characteristics in human lung adenocarcinoma. J Cancer 8:1774–1785. https://doi.org/10.7150/jca.19732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kong T, Ahn R, Yang K et al (2020) CD44 promotes PD-L1 expression and its tumor-intrinsic function in breast and lung cancers. Cancer Res 80:444–457. https://doi.org/10.1158/0008-5472.CAN-19-1108

    Article  CAS  PubMed  Google Scholar 

  87. Zanoni M, Piccinini F, Arienti C et al (2016) 3D tumor spheroid models for in vitro therapeutic screening: a systematic approach to enhance the biological relevance of data obtained. Sci Rep 6:19103. https://doi.org/10.1038/srep19103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Han SJ, Kwon S, Kim KS (2021) Challenges of applying multicellular tumor spheroids in preclinical phase. Cancer Cell Int 21:152. https://doi.org/10.1186/s12935-021-01853-8

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors greatly appreciate and thank the financial support provided by King Fahd University of Petroleum and Minerals, Interdisciplinary Research Center for Advanced Materials under the project No. INAM2210 (A.A. Isab). This work was supported in part by grant IG 15844 from the Italian Association for Cancer Research (D.A.) and Italian Ministry of Health (Ricerca Corrente).

Author information

Authors and Affiliations

Authors

Contributions

N.C: Investigation, Methodology, Writing – review and editing; C.B.: Methodology, Formal analysis; G.C.: Methodology, Data acquisition; D. A.: Investigation, Supervision, Writing—original draft; M.A.: Investigation, Validation; A.A.A. S.: Investigation, Methodology, Formal analysis; A.A.I.: Project administration, Supervision; S.A.: Investigation, Writing—original draft; A.M.P.P.: Formal analysis, Software.

Corresponding authors

Correspondence to Donatella Aldinucci, Adam A. A. Sulaiman or Anvarhusein A. Isab.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

775_2023_2025_MOESM1_ESM.pdf

Supplementary file1 (PDF 818 KB) Crystallographic data of complexes 2 and 3 have been deposited with the Cambridge Crystallographic Data Centre via the CCDC Number 2251701 and 2251702 respectively. Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK, e-mail: deposit@ccdc.cam.ac.uk or www.ccdc.cam.ac.uk.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Casagrande, N., Borghese, C., Corona, G. et al. Dinuclear gold(I) complexes based on carbene and diphosphane ligands: bis[2-(dicyclohexylphosphano)ethyl]amine complex inhibits the proteasome activity, decreases stem cell markers and spheroid viability in lung cancer cells. J Biol Inorg Chem 28, 751–766 (2023). https://doi.org/10.1007/s00775-023-02025-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-023-02025-x

Keywords

Navigation