Skip to main content
Log in

Bis(triazinyl)pyridine complexes of Pt(II) and Pd(II): studies of the nucleophilic substitution reactions, DNA/HSA interactions, molecular docking and biological activity

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Four new complexes of Pt(II) and Pd(II), [Pd(L1)Cl]Cl 1, [Pd(L2)Cl]Cl 2, [Pt(L1)Cl]Cl 3 and [Pt(L2)Cl]Cl 4 (where L1 = 2,6-bis(5,6-diphenyl-1,2,4-triazin-3-yl)pyridine and L2 = 2,6-bis(5,6-dipropyl-1,2,4-triazin-3-yl)pyridine), were synthesized. Characterization of the complexes was performed using elemental analysis, IR, 1H NMR spectroscopy and MALDI-TOF mass spectrometry. The substitution reactions of 1–4 complexes with l-methionine (l-met), l-cysteine (l-cys) and guanosine-5ʹ-monophosphate (5ʹ-GMP), were studied spectrophotometrically at physiological conditions. Complexes with ligand L1 (1 or 3) were more reactive than those with ligand L2 (2 or 4) by a factor ranging up to 1.57 and 3.71, respectively. The order of reactivity of the nucleophiles was: l-met > l-cys > 5ʹ-GMP. The interactions of complexes with calf thymus-DNA (CT-DNA) and human serum albumin (HSA) were studied by Uv–Vis absorption and fluorescence emission spectroscopy. Competitive binding studies with intercalative agent ethidium bromide (EB) and minor groove binder Hoechst 33258 were performed as well. All studied complexes can interact with DNA through the intercalation and minor groove binding, where the latter was preferred. The binding constants (103 and 104 M−1) for the interaction of complexes with HSA indicate the moderate binding affinity of complexes 1–4 to protein. The trends in the experimental results of binding studies between complexes 3 and 4 with DNA and HSA were compared to those obtained from the molecular docking study. Biological evaluation of cytotoxicity of 1 and 2 on HCT-116 and MDA-MB-231 cell lines showed significant cytotoxic and prooxidative character, while 2 also exerted extraordinary selectivity towards colon cancer in comparison to breast cancer cells.

Graphic abstract

The nucleophilic substitution reactions, DNA/HSA interactions, molecular docking and biological activity of bis(triazinyl)pyridine complexes of Pt(II) and Pd(II) were studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

L1:

2,6-Bis(5,6-diphenyl-1,2,4-triazin-3-yl)pyridine

L2:

2,6-Bis(5,6-dipropyl-1,2,4-triazin-3-yl)pyridine

L-met:

L-methionine

L-cys:

L-cysteine

5′-GMP:

Guanosine-5′-monophosphate

CT-DNA:

Calf thymus-DNA

HAS:

Human serum albumin

EB:

Ethidium bromide

Hoechst 33258:

2-(4-hydroxyphenyl)-5-[5-(4-methylpipera-zine-1-yl)-benzimidazo-2-yl]-benzimidazole

DMF:

Dimethylformamide

HCT-116:

Human colorectal carcinoma cells

MDA-MB-231:

Human breast cancer cells

References

  1. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F (2015) Int J Cancer 136:E359-386

    CAS  PubMed  Google Scholar 

  2. Alessio E (2011) Bioinorganic medicinal chemistry. Wiley-VCH Verlag & Co KGaA, Weinheim, Germany

    Book  Google Scholar 

  3. Anthony JE, Bolitho EM, Bridgewater HE, Carter OWL, Donnelly JM, Imberti C, Lant EC, Lermyte F, Needham RJ, Palau M, Sadler PJ, Shi H, Wang FX, Zhang WY, Zhang Z (2020) Chem Sci 11:12888–12917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Simović AR, Bogojeski J, Petrović B, Stević SJ (2020) Macroheterocycles 13:201–209

    Article  CAS  Google Scholar 

  5. Petrović B, Jovanović S, Puchta R, van Eldik R (2019) Inorg Chim Acta 495:118953

    Article  CAS  Google Scholar 

  6. Ndagi U, Mhlongo N, Soliman ME (2017) Drug Des Devel Ther 11:599–616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fanelli M, Formica M, Fusi V, Giorgi L, Micheloni M, Paoli P (2016) Coord Chem Rev 310:41–79

    Article  CAS  Google Scholar 

  8. Kritchenkov AS, Stanishevskii YM, Skorik YZ (2019) Pharm Chem J 53:8–16

    Article  CAS  Google Scholar 

  9. Wang D, Lippard SJ (2005) Nat Rev Drug Discov 4:307–320

    Article  CAS  PubMed  Google Scholar 

  10. Aldossary SA (2019) Biomed Pharmacol J 12:7–15

    Article  CAS  Google Scholar 

  11. Arsenijević M, Milovanović M, Jovanović S, Arsenijević N, Simović Marković B, Gazdić M, Volarević V (2017) J Biol Inorg Chem 22:807–817

    Article  PubMed  CAS  Google Scholar 

  12. Ćoćić D, Jovanović-Stević S, Jelić R, Matić S, Popović S, Djurdjević P, Baskić D, Petrović P (2020) Dalton Trans 49:14411–14431

    Article  PubMed  Google Scholar 

  13. Ćoćić D, Jovanović S, Radisavljević S, Korzekwa J, Scheurer A, Puchta R, Baskić D, Todorović D, Popović S, Matić S, Petrović B (2018) J Inorg Biochem 189:91–102

    Article  PubMed  CAS  Google Scholar 

  14. Jovanović S, Obrenčević K, Bugarčić ŽD, Popović I, Žakula J, Petrović B (2016) Dalton Trans 45:12444–12457

    Article  PubMed  CAS  Google Scholar 

  15. Bugarčić ŽD, Bogojeski J, Petrović B, Hochreuther S, van Eldik R (2012) Dalton Trans 41:12329–12345

    Article  PubMed  CAS  Google Scholar 

  16. Petrović B, Bugarčić ŽD, Dees A, Ivanović-Burmazović I, Heinemann F, Puchta R, Steinmann SN, Corminboeuf C, van Eldik R (2012) Inorg Chem 51:1516–1529

    Article  PubMed  CAS  Google Scholar 

  17. Omondi OR, Ojwacha SO, Jaganyi D (2020) Inorg Chim Acta 512:119883

    Article  CAS  Google Scholar 

  18. Timerbaev AR, Hartinger CG, Aleksenko SS, Keppler BK (2006) Chem Rev 106:2224–2248

    Article  CAS  PubMed  Google Scholar 

  19. Case FH (1971) J Heterocycl Chem 8:1043–1046

    Article  CAS  Google Scholar 

  20. Kolarik Z, Müllich U, Gassner F (1999) Solvent Extr Ion Exch 17:1155–1170

    Article  CAS  Google Scholar 

  21. Shahabadi N, Maghsudi M (2014) Mol Biosyst 10:338–347

    Article  CAS  PubMed  Google Scholar 

  22. Dimiza F, Fountoulaki S, Papadopoulos AN, Kontogiorgis CA, Tangoulis V, Raptopoulou CP, Psycharis V, Terzis A, Kessissoglou DP, Psomas G (2011) Dalton Trans 40:8555–8568

    Article  CAS  PubMed  Google Scholar 

  23. Becke AD (1993) J Phys Chem 97:5648–5652

    Article  Google Scholar 

  24. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  25. Stephens PJ, Devli FJ, Chabalowski CF, Frisch MJ (1994) J Phys Chem 98:11623–11627

    Article  CAS  Google Scholar 

  26. Andrae D, Häußermann U, Dolg M, Stoll H, Preuß H (1990) Theor Chim Acta 77:123–141

    Article  CAS  Google Scholar 

  27. Weigend F, Ahlrichs R (2005) Phys Chem Chem Phys 7:3297–3305

    Article  CAS  PubMed  Google Scholar 

  28. Gaussian 09, Revision C.01, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian, Inc, Wallingford CT

  29. Thomsen R, Christensen MH (2006) J Med Chem 49:3315–3321

    Article  CAS  PubMed  Google Scholar 

  30. Radisavljević S, Ćoćić D, Jovanović S, Šmit B, Petković M, Milivojević N, Planojević N, Marković S, Petrović B (2019) J Biol Inorg Chem 24:1057–1076

    Article  PubMed  CAS  Google Scholar 

  31. Medjedović M, Rilak-Simović A, Ćoćić D, Milutinović M, Senft L, Blagojević S, Milivojević N, Petrović B (2020) Polyhedron 178:114334–114344

    Article  CAS  Google Scholar 

  32. Petrović A, Živanović M, Puchta R, Ćoćić D, Scheurer A, Milivojevic N, Bogojeski J (2020) Dalton Trans 49:9070–9085

    Article  PubMed  Google Scholar 

  33. Radisavljević S, Đeković-Kesić A, Ćoćić D, Puchta R, Senft L, Milutinović M, Milivojević N, Petrović B (2020) New J Chem 44:11172–11187

    Article  Google Scholar 

  34. Petrović AZ, Ćoćić D, Bockfeld D, Živanović M, Milivojević N, Virijević K, Janković N, Scheurer A, Vraneš M, Bogojeski JV (2021) Inorg Chem Front 8:2749–2770

    Article  Google Scholar 

  35. Petrović A, Milutinović MM, Petri ET, Živanović M, Milivojević N, Puchta R, Scheurer A, Korzekwa J, Klisurić OR, Bogojeski J (2019) Inorg Chem 58:307–319

    Article  PubMed  CAS  Google Scholar 

  36. Živković MD, Rajković S, Glišić BÐ, Drašković NS, Djuran MI (2017) Bioorg Chem 72:190–198

    Article  PubMed  CAS  Google Scholar 

  37. Bugarčić ŽD, Bogojeski J, van Eldik R (2015) Coord Chem Rev 292:91–106

    Article  CAS  Google Scholar 

  38. Rizvi MA, Zaki M, Afzal MM, Mane M, Kumar M, Shah BA, Srivastav S, Srikrishna S, Peerzada GM, Tabassum S (2015) Eur J Med Chem 90:876–888

    Article  CAS  PubMed  Google Scholar 

  39. Milutinović MM, Bogojeski JV, Klisurić O, Scheurer A, Elmroth SKC, Bugarčić ŽD (2016) Dalton Trans 45:15481–15491

    Article  PubMed  CAS  Google Scholar 

  40. Recio Despaigne AA, Da Silva JG, da Costa PR, dos Santos RG, Beraldo H (2014) Molecules 19:17202–17220

    Article  PubMed  CAS  Google Scholar 

  41. Boger BC, Fink BE, Brunette SR, Tse WC, Hedrick MP (2001) J Am Chem Soc 123:5878–5891

    Article  CAS  PubMed  Google Scholar 

  42. Fornander LH, Wu L, Billeter M, Lincoln P, Nordén B (2013) J Phys Chem B 117:5820–5830

    Article  CAS  PubMed  Google Scholar 

  43. Novakova O, Chen H, Vrana O, Rodger A, Sadler PJ, Brabec V (2003) Biochemistry 42:11544–11554

    Article  CAS  PubMed  Google Scholar 

  44. Wang F, Huang W, Dai ZX (2008) J Mol Struct 875:509–514

    Article  CAS  Google Scholar 

  45. Kljun J, Bratsos I, Alessio E, Psomas G, Repnik U, Butinar M, Turk B, Turel I (2013) Inorg Chem 52:9039–9052

    Article  CAS  PubMed  Google Scholar 

  46. Afanasev IB (2009) Signaling mechanisms of oxygen and nitrogen free radicals. CRC Press, Inc, Boca Raton

    Book  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from the Ministry of Education, Science and Technological Development of the Republic of Serbia (Agreement No. 451-03-9/2021-14/200378 and Agreement No. 451-03-9/2021-14/200122). MALDI-TOF mass spectrometry was conducted by Research Professor Dr. Marijana Petković at CQM-Madeira Chemistry Research Centre, University of Madeira, Funchal, Portugal, supported by the FCT-Fundação para a Ciência e a Tecnologia (CQM Base Fund—UIDB/00674/2020, and Programmatic Fund—UIDP/00674/2020), Madeira 14-20 Program (project PROEQUIPRAM-Reforço do Investimento em Equipamentos e Infrastructures Científcas na RAM-M1420-01-0145-FEDER-000008) and by ARDITI-Agência Regional para o Desenvolvimento da InvestigaçãoTecnologia e Inovação, ARDITI-CQM_2019-018-ISG.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. SJ-S: supervision, validation, writing—review, and editing; SR: investigation; AS: investigation, methodology; DĆ: investigation, software; BŠ: formal analysis; MP: formal analysis; MNŽ: investigation, methodology; KV: investigation; BP: investigation, resources, methodology. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Snežana Jovanović-Stević.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2425 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jovanović-Stević, S., Radisavljević, S., Scheurer, A. et al. Bis(triazinyl)pyridine complexes of Pt(II) and Pd(II): studies of the nucleophilic substitution reactions, DNA/HSA interactions, molecular docking and biological activity. J Biol Inorg Chem 26, 625–637 (2021). https://doi.org/10.1007/s00775-021-01879-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-021-01879-3

Keywords

Navigation