Skip to main content
Log in

Conformational dynamics of metallo-β-lactamase CcrA during catalysis investigated by using DEER spectroscopy

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Previous crystallographic and mutagenesis studies have implicated the role of a position-conserved hairpin loop in the metallo-β-lactamases in substrate binding and catalysis. In an effort to probe the motion of that loop during catalysis, rapid-freeze-quench double electron–electron resonance (RFQ-DEER) spectroscopy was used to interrogate metallo-β-lactamase CcrA, which had a spin label at position 49 on the loop and spin labels (at positions 82, 126, or 233) 20–35 Å away from residue 49, during catalysis. At 10 ms after mixing, the DEER spectra show distance increases of 7, 10, and 13 Å between the spin label at position 49 and the spin labels at positions 82, 126, and 233, respectively. In contrast to previous hypotheses, these data suggest that the loop moves nearly 10 Å away from the metal center during catalysis and that the loop does not clamp down on the substrate during catalysis. This study demonstrates that loop motion during catalysis can be interrogated on the millisecond time scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CcrA*:

Spin-labeled site-directed variant CcrA:C155S

CcrA*(49):

Spin-labeled site-directed variant CcrA:C155S/W49C

CcrA*(49/82):

Spin-labeled site-directed variant CcrA:C155S/W49C/N82C

CcrA*(49/126):

Spin-labeled site-directed variant CcrA:C155S/W49C/D126C

CcrA*(49/233):

Spin-labeled site-directed variant CcrA:C155SW49C/E233C

DEER:

Double electron–electron resonance/pulsed electron–electron double resonance

EPR:

Electron paramagnetic (spin) resonance

MTSL:

(S-(1-oxyl-2,2,5,5-tetramethyl-2,5-dihydro-1H-pyrrol-3-yl)methyl methanesulfonothioate)

MβL:

Metallo-β-lactamase

RFQ:

Rapid freeze quench

References

  1. Daiyasu H, Osaka K, Ishino Y, Toh H (2001) FEBS Lett 503:1–6

    Article  CAS  PubMed  Google Scholar 

  2. Bush K, Jacoby GA (2010) Antimicro Agents Chemo 54:969–976

    Article  CAS  Google Scholar 

  3. Cornaglia G, Giamarellou H, Rossolini GM (2011) Lancet Infect Dis 11:381–393

    Article  CAS  PubMed  Google Scholar 

  4. Fast W, Sutton LD (2013) Biochim Biophys Acta 1834:1648–1659

    Article  CAS  PubMed  Google Scholar 

  5. Palzkill T (2013) Metallo-β-lactamase structure and function. In: Bush K (ed) Annals of the New York Academy of Sciences. Antimicrobial Therapeutics Reviews, vol 1277. New York Academy of Sciences, New York, pp 91–104

  6. King DT, Strynadka NC (2013) Future Med Chem 5:1243–1263

    Article  CAS  PubMed  Google Scholar 

  7. Wang JF, Chou KC (2013) Curr Topics Med Chem 13:1242–1253

    Article  CAS  Google Scholar 

  8. Concha NO, Rasmussen BA, Bush K, Herzberg O (1996) Structure 4:823–836

    Article  CAS  PubMed  Google Scholar 

  9. Villadares MH, Galleni M, Frere JM, Felici A, Perilli M, Franceschini N, Rossolini GM, Oratore A, Amicosante G (1996) Micro Drug Resist 2:253–256

    Article  CAS  Google Scholar 

  10. Crawford PA, Sharma N, Chandrasekar S, Sigdel T, Walsh TR, Spencer J, Crowder MW (2004) Prot Express Purif 36:272–279

    Article  CAS  Google Scholar 

  11. Walsh TR, Gamblin S, Emery DC, MacGowan AP, Bennett PM (1996) J Antimicro Chemo 37:423–431

    Article  CAS  Google Scholar 

  12. Ullah JH, Walsh TR, Taylor IA, Emery DC, Verma CS, Gamblin SJ, Spencer J (1998) J Mol Biol 284:125–136

    Article  CAS  PubMed  Google Scholar 

  13. Crowder MW, Walsh TR, Banovic L, Pettit M, Spencer J (1998) Antimicro Agents Chemo 42:921–926

    CAS  Google Scholar 

  14. Yang H, Aitha M, Marts AR, Hetrick A, Bennett B, Crowder MW, Tierney DL (2014) J Am Chem Soc 136:7273–7285

    Article  CAS  PubMed  Google Scholar 

  15. Aitha M, Marts A, Bergstrom A, Moller A, Moritz L, Turner L, Nix J, Bonomo R, Page R, Tierney DL, Crowder MW (2014) Biochemistry 53:7321–7331

    Article  CAS  PubMed  Google Scholar 

  16. Bush K, Macielag MJ (2010) Exp Opin Thera Patents 20:1277–1293

    Article  CAS  Google Scholar 

  17. Drawz SM, Bonomo RA (2010) Clin Microbiol Rev 23:160–201

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Lassaux P, Hamel M, Gulea M, Delbruck H, Mercuri PS, Horsfall L, Dehareng D, Kupper M, Frere JM, Hoffmann K, Galleni M, Bebrone C (2010) J Med Chem 53:4862–4876

    Article  CAS  PubMed  Google Scholar 

  19. Rolain JM, Parola P, Cornaglia G (2010) Clin Microbiol Infect 16:1699–1701

    Article  CAS  PubMed  Google Scholar 

  20. Vella P, Hussein WM, Leung EW, Clayton D, Ollis DL, Mitic N, Schenk G, McGeary RP (2011) Bioorg Med Chem Lett 21:3282–3285

    Article  CAS  PubMed  Google Scholar 

  21. Prescott JF (2013) In: Giguere S, Prescott JF, Dowling PM (eds) Other β-lactam antibiotics: beta-lactamase inhibitors, carbapenems, and monobactams. Wiley, New York, pp 175–188

    Google Scholar 

  22. Yang KW, Feng L, Yang SK, Aitha M, LaCuran AE, Oelschlaeger P, Crowder MW (2013) Bioorg Med Chem Lett 23:5855–5859

    Article  CAS  PubMed  Google Scholar 

  23. Yang H, Aitha M, Hetrick AM, Richmond TK, Tierney DL, Crowder MW (2012) Biochemistry 51:3839–3847

    Article  CAS  PubMed  Google Scholar 

  24. Concha NO, Janson CA, Rowling P, Pearson S, Cheever CA, Clarke BP, Lewis C, Galleni M, Frere JM, Payne DJ, Bateson JH, Abdel-Meguid SS (2000) Biochemistry 39:4288–4298

    Article  CAS  PubMed  Google Scholar 

  25. Mollard C, Moali C, Papamicael C, Damblon C, Vessilier S, Amicosante G, Schofield CJ, Galleni M, Frere JM, Roberts GCK (2001) J Biol Chem 276:45015–45023

    Article  CAS  PubMed  Google Scholar 

  26. Scrofani SD, Chung J, Huntley JJ, Benkovic SJ, Wright PE, Dyson HJ (1999) Biochemistry 38:14507–14514

    Article  CAS  PubMed  Google Scholar 

  27. Toney JH, Fitzgerald PM, Grover-Sharma N, Olson SH, May WJ, Sundelof JG, Vanderwall DE, Cleary KA, Grant SK, Wu JK, Kozarich JW, Pompliano DL, Hammond GG (1998) Chem Biol 5:185–196

    Article  CAS  PubMed  Google Scholar 

  28. Cameron AD, Ridderstrom M, Olin B, Mannervik B (1999) Structure 7:1067–1078

    Article  CAS  PubMed  Google Scholar 

  29. de la Sierra-Gallay IL, Pellegrini O, Condon C (2005) Nature 433:657–661

    Article  Google Scholar 

  30. Marasinghe GPK, Sander IM, Bennett B, Periyannan G, Yang KW, Makaroff CA, Crowder MW (2005) J Biol Chem 280:40668–40675

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Fitzgerald PMD, Wu JK, Toney JH (1998) Biochemistry 37:6791–6800

    Article  CAS  PubMed  Google Scholar 

  32. Huntley JJA, Scrofani SDB, Osborne MJ, Wright PE, Dyson HJ (2000) Biochemistry 39:13356–13364

    Article  CAS  PubMed  Google Scholar 

  33. Huntley JJA, Fast W, Benkovic SJ, Wright PE, Dyson HJ (2003) Protein Sci 12:1368–1375

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Yang Y, Keeney D, Tang XJ, Canfield N, Rasmussen BA (1999) J Biol Chem 274:15706–15711

    Article  CAS  PubMed  Google Scholar 

  35. Moali C, Anne C, Lamotte-Brasseur J, Groslambert S, Devreese B, Van Beeumen J, Galleni M, Frere JM (2003) Chem Biology 10:319–329

    Article  CAS  Google Scholar 

  36. Dal Peraro M, Vila AJ, Carloni P (2002) J Biol Inorg Chem 7:704–712

    Article  CAS  PubMed  Google Scholar 

  37. Garau G, Bebrone C, Anne C, Galleni M, Frere JM, Dideberg O (2005) J Mol Biol 345:785–795

    Article  CAS  PubMed  Google Scholar 

  38. Sharma N, Hu Z, Crowder MW, Bennett B (2008) J Am Chem Soc 130:8215–8222

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Yanchak MP, Taylor RA, Crowder MW (2000) Biochemistry 39:11330–11339

    Article  CAS  PubMed  Google Scholar 

  40. Wang Z, Benkovic SJ (1998) J Biol Chem 273:22402–22408

    Article  CAS  PubMed  Google Scholar 

  41. Aitha M, Richmond TK, Hu Z, Hetrick A, Reese R, Gunther A, McCarrick R, Bennett B, Crowder MW (2014) J Inorg Biochem 136:40–46

    Article  CAS  PubMed  Google Scholar 

  42. Garrity JD, Bennett B, Crowder MW (2005) Biochemistry 44:1078–1087

    Article  CAS  PubMed  Google Scholar 

  43. Sharma NP, Hajdin C, Chandrasekar S, Bennett B, Yang KW, Crowder MW (2006) Biochemistry 45:10729–10738

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Bennett B (2012) Sample Preparation for service at the National Biomedical EPR Center. In: International EPR (ESR) Society EPR Newsletter, pp 10–12

  45. Bohme S, Steinhoff HJ, Klare JP (2010) Spectrosc Int J 24:283–288

    Article  Google Scholar 

  46. Zou P, Mchaourab HS (2010) Biophys J 98:L18–L20

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Jeschke G (2012) Annu Rev Phys Chem 63:419–446

  48. Toledo Warshaviak D, Khramtsov VV, Cascio D, Altenbach C, Hubbell WL (2013) J Mag Res 232:53–61

    Article  CAS  Google Scholar 

  49. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K (2005) J Comput Chem 26:1781–1802

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Humphrey W, Dalke A, Schulten K (1996) J Mol Graphics 14:33–38

    Article  CAS  Google Scholar 

  51. Feldmann EA, Ni S, Sahu ID, Mishler CH, Risser DD, Murakami JL, Tom SK, McCarrick RM, Lorigan GA, Tolbert BS, Callahan SM, Kennedy MA (2011) Biochemistry 50:9212–9224

    Article  CAS  PubMed  Google Scholar 

  52. Rasmussen BA, Gluzman Y, Tally FP (1990) Antimicro Agents Chemo 34:1590–1592

    Article  CAS  Google Scholar 

  53. McManus-Munoz S, Crowder MW (1999) Biochemistry 38:1547–1553

    Article  CAS  PubMed  Google Scholar 

  54. Wang Z, Fast W, Benkovic SJ (1999) Biochemistry 38:10013–10023

    Article  CAS  PubMed  Google Scholar 

  55. Garrity JD, Pauff JM, Crowder MW (2004) J Biol Chem 279:39663–39670

    Article  CAS  PubMed  Google Scholar 

  56. Griffin DH, Richmond TK, Sanchez C, Moller AJ, Breece RM, Tierney DL, Bennett B, Crowder MW (2011) Biochemistry 50:9125–9134

    Article  CAS  PubMed  Google Scholar 

  57. Georgieva ER, Roy AS, Grigoryants VM, Borbat PP, Earle KA, Scholes CP, Freed JH (2012) J Mag Res 216:69–77

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Funding and support from Miami University, National Science Foundation (CHE1151658 to MWC), and the National Institutes of Health (GM108026 to GAL) are gratefully acknowledged. Zahilyn Roche was an NSF-REU student in 2012. The National Biomedical EPR Center (James S. Hyde, Medical College of Wisconsin) is supported by a NIH P41 EB001980 Grant. The pulsed EPR spectrometer at Miami was purchased through NSF MRI-0722403 and the Ohio Board of Regents Grants. The authors thank Christian Altenbach, UCLA, for providing LongDistance and Candice S. Klug, Medical College of Wisconsin, for assistance with LongDistance and discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Brian Bennett or Michael W. Crowder.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 359 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aitha, M., Moritz, L., Sahu, I.D. et al. Conformational dynamics of metallo-β-lactamase CcrA during catalysis investigated by using DEER spectroscopy. J Biol Inorg Chem 20, 585–594 (2015). https://doi.org/10.1007/s00775-015-1244-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-015-1244-8

Keywords

Navigation