Skip to main content
Log in

A two-electron-shell game: intermediates of the extradiol-cleaving catechol dioxygenases

  • Minireview
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Extradiol-cleaving catechol dioxygenases function by binding both the organic substrate and O2 at a divalent metal center in the active site. They have proven to be a particularly versatile group of enzymes with which to study the O2 activation process. Here, recent studies of homoprotocatechuate 2,3-dioxygenase are summarized, showing how nature can utilize the enzyme structure and the properties of the metal and the substrate to select among many possible chemical paths to achieve both specificity and efficiency. Possible intermediates in the mechanism have been trapped by swapping active-site metals, introducing active-site amino acid substituted variants, and using substrates with different electron-donating capacities. Although each of these intermediates could form part of a viable reaction pathway, kinetic measurements significantly limit the likely candidates. Structural, kinetic, spectroscopic, and computational analyses of the various intermediates shed light on how catalytic efficiency can be achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2
Scheme 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Vaillancourt FH (2006) Crit Rev Biochem Mol Biol 41:241–267

    Article  CAS  PubMed  Google Scholar 

  2. Zhang Y, Colabroy KL, Begley TP, Ealick SE (2005) Biochemistry 44:7632–7643

    Article  CAS  PubMed  Google Scholar 

  3. Harpel MR, Lipscomb JD (1990) J Biol Chem 265:22187–22196

    CAS  PubMed  Google Scholar 

  4. Hayes RP, Green AR, Nissen MS, Lewis KM, Xun L, Kang C (2013) Mol Microbiol 88:523–536

    Article  CAS  PubMed  Google Scholar 

  5. Colabroy KL, Smith IR, Vlahos AH, Markham AJ, Jakubik ME (2014) Biochim Biophys Acta. doi:10.1016/j.bbapap.2013.1012.1005

  6. Fernández-Cañón J, Granadino B, de Bernabé DB-V, Renedo M, Fernández-Ruiz E, Peñalva M, de Córdoba SR (1996) Nat Genet 14:19–24

    Article  PubMed  Google Scholar 

  7. Schwarcz R, Okuno E, White RJ, Bird ED, Whetsell WO Jr (1988) Proc Natl Acad Sci USA 85:4079–4081

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Emerson JP, Kovaleva EG, Farquhar ER, Lipscomb JD, Que L Jr (2008) Proc Natl Acad Sci USA 105:7347–7352

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Fielding AJ, Kovaleva EG, Farquhar ER, Lipscomb JD, Que L Jr (2011) J Biol Inorg Chem 16:341–355

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Sato N, Uragami Y, Nishizaki T, Takahashi Y, Sazaki G, Sugimoto K, Nonaka T, Masai E, Fukuda M, Senda T (2002) J Mol Biol 321:621–636

    Article  CAS  PubMed  Google Scholar 

  11. Sugimoto K, Senda T, Aoshima H, Masai E, Fukuda M, Mitsui Y (1999) Structure 7:953–965

    Article  CAS  PubMed  Google Scholar 

  12. Titus GP, Mueller HA, Burgner J, Rodriguez De Cordoba D, Peñalva MA, Timm DE (2000) Nat Struct Biol 7:542–546

    Article  CAS  PubMed  Google Scholar 

  13. Miller MA, Lipscomb JD (1996) J Biol Chem 271:5524–5535

    Article  CAS  PubMed  Google Scholar 

  14. Kovaleva EG, Lipscomb JD (2007) Science 316:453–457

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Vetting MW, Wackett LP, Que L Jr, Lipscomb JD, Ohlendorf DH (2004) J Bacteriol 186:1945–1958

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Babbitt PC, Gerlt JA (1997) J Biol Chem 272:30591–30594

    Article  CAS  PubMed  Google Scholar 

  17. Hegg EL, Que L Jr (1997) Eur J Biochem 250:625–629

    Article  CAS  PubMed  Google Scholar 

  18. Bruijnincx PCA, van Koten G, Klein Gebbink RJM G (2008) Chem Soc Rev 37:2716–2744

    Article  CAS  PubMed  Google Scholar 

  19. Koehntop KD, Emerson JP, Que L Jr (2005) J Biol Inorg Chem 10:83–97

    Article  Google Scholar 

  20. Vaillancourt FH, Barbosa CJ, Spiro TG, Bolin JT, Blades MW, Turner RFB, Eltis LD (2002) J Am Chem Soc 124:2485–2496

    Article  CAS  PubMed  Google Scholar 

  21. Yam KC, Addison CJ, Farquhar ER, Mbughuni MM, Fielding AJ, Lipscomb JD, Blades MW, Que L Jr, Turner RFB, Eltis LB (unpublished results)

  22. Kovaleva EG, Lipscomb JD (2012) Biochemistry 51:8755–8763

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Emerson JP, Wagner ML, Reynolds MF, Que L Jr, Sadowsky MJ, Wackett LP (2005) J Biol Inorg Chem 10:751–760

    Article  CAS  PubMed  Google Scholar 

  24. Bratsch SG (1989) J Phys Chem Ref Data 18:1–21

    Article  CAS  Google Scholar 

  25. Jackson TA, Brunold TC (2004) Acc Chem Res 37:461–470

    Article  CAS  PubMed  Google Scholar 

  26. Vance CK, Miller A-F (1998) J Am Chem Soc 120:461–467

    Article  CAS  Google Scholar 

  27. Yikilmaz E, Porta J, Grove LE, Vahedi-Faridi A, Bronshteyn Y, Brunold TC, Borgstahl GEO, Miller A-F (2007) J Am Chem Soc 129:9927–9940

    Article  CAS  PubMed  Google Scholar 

  28. Northrop DB (1998) J Chem Educ 75:1153–1157

    Article  CAS  Google Scholar 

  29. Groce SL, Miller-Rodeberg MA, Lipscomb JD (2004) Biochemistry 43:15141–15153

    Article  CAS  PubMed  Google Scholar 

  30. Arciero DM, Lipscomb JD (1986) J Biol Chem 261:2170–2178

    CAS  PubMed  Google Scholar 

  31. Shu L, Chiou YM, Orville AM, Miller MA, Lipscomb JD, Que L Jr (1995) Biochemistry 34:6649–6659

    Article  CAS  PubMed  Google Scholar 

  32. Bugg TDH (2003) Tetrahedron 59:7075–7101

    Article  CAS  Google Scholar 

  33. Groce SL, Lipscomb JD (2005) Biochemistry 44:7175–7188

    Article  CAS  PubMed  Google Scholar 

  34. Lipscomb JD (2008) Curr Opin Chem Biol 18:644–649

    CAS  Google Scholar 

  35. Spence EL, Langley GJ, Bugg TDH (1996) J Am Chem Soc 118:8336–8343

    Article  CAS  Google Scholar 

  36. Mbughuni M, Chakrabarti M, Hayden JA, Meier KK, Dalluge JJ, Hendrich MP, Münck E, Lipscomb JD (2011) Biochemistry 50:10262–10274

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Mbughuni MM, Chakrabarti M, Hayden JA, Bominaar EL, Hendrich MP, Münck E, Lipscomb JD (2010) Proc Natl Acad Sci USA 107:16788–16793

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Mbughuni MM, Meier KK, Münck E, Lipscomb JD (2012) Biochemistry 51:8743–8754

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Fielding AJ, Lipscomb JD, Que L Jr (2012) J Am Chem Soc 134:796–799

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Jones RD, Summerville DA, Basolo F (1979) Chem Rev 79:139–179

    Article  CAS  Google Scholar 

  41. Smith TD, Pilbrow JR (1981) Coord Chem Rev 39:295–383

    Article  CAS  Google Scholar 

  42. Fielding AJF, Kovaleva EG, Farquhar ER, Lipscomb JD, Que L Jr (2010) J Biol Inorg Chem 16:341–355

    Article  PubMed Central  PubMed  Google Scholar 

  43. Gunderson WA, Zatsman AI, Emerson JP, Farquhar ER, Que L Jr, Lipscomb JD, Hendrich MP (2008) J Am Chem Soc 130:14465–14467

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Krebs C, Galonić Fujimoori D, Barr EW, Walsh CT, Bollinger JM Jr (2007) Acc Chem Res 40:484–492

    Article  CAS  PubMed  Google Scholar 

  45. Kovaleva EG, Lipscomb JD (2008) Biochemistry 47:11168–11170

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Borowski T, Georgiev V, Siegbahn PEM (2010) J Mol Model 16:1673–1677

    Article  CAS  PubMed  Google Scholar 

  47. Jeoung J-H, Bommer M, Lin T-Y, Dobbek H (2013) Proc Natl Acad Sci USA 110:12625–12630

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Zatkova A (2011) J Inherit Metab Dis 34:1127–1136

    Article  PubMed  Google Scholar 

  49. Rodríguez JM, Timm DE, Titus GP, Beltrán-Valero de Bernabé D, Criado O, Mueller HA, Rodríguez de Cordoba S, Peñalva MA (2000) Hum Mol Genet 9:2341–2350

  50. Siegbahn PEM, Haeffner F (2004) J Am Chem Soc 126:8919–8932

    Article  CAS  PubMed  Google Scholar 

  51. Bassan A, Borowski T, Siegbahn PEM (2004) Dalton Ttans 3153–3162

  52. Georgiev V, Borowski T, Siegbahn PEM (2006) J Biol Inorg Chem 11:571–585

    Article  CAS  PubMed  Google Scholar 

  53. Georgiev V, Borowski T, Blomberg MRA, Siegbahn PEM (2008) J Biol Inorg Chem 13:929–940

    Article  CAS  PubMed  Google Scholar 

  54. Christian GJ, Ye S, Neese F (2012) Chem Sci 3:1600–1611

    Article  CAS  Google Scholar 

  55. Dong G, Shaik S, Lai W (2013) Chem Sci 4:3624–3635

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to John D. Lipscomb or Lawrence Que Jr.

Additional information

Dedicated to the memory of Ivano Bertini, a man whose vision raised the world’s attention to the field of biological inorganic chemistry and whose passion and enthusiasm inspired many young scientists to excel.

Responsible Editor: Lucia Banci and Claudio Luchinat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fielding, A.J., Lipscomb, J.D. & Que, L. A two-electron-shell game: intermediates of the extradiol-cleaving catechol dioxygenases. J Biol Inorg Chem 19, 491–504 (2014). https://doi.org/10.1007/s00775-014-1122-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-014-1122-9

Keywords

Navigation