Skip to main content
Log in

GdDO3NI, a nitroimidazole-based T 1 MRI contrast agent for imaging tumor hypoxia in vivo

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Tumor hypoxia is known to affect sensitivity to radiotherapy and promote development of metastases; therefore, the ability to image tumor hypoxia in vivo could provide useful prognostic information and help tailor therapy. We previously demonstrated in vitro evidence for selective accumulation of a gadolinium tetraazacyclododecanetetraacetic acid monoamide conjugate of 2-nitroimidazole (GdDO3NI), a magnetic resonance imaging T 1-shortening agent, in hypoxic cells grown in tissue culture. We now report evidence for accumulation of GdDO3NI in hypoxic tumor tissue in vivo. Our data show that GdDO3NI accumulated significantly (p < 0.05) in the central, poorly perfused regions of rat prostate adenocarcinoma AT1 tumors (threefold higher concentration than for the control agent) and showed better clearance from well-perfused regions and complete clearance from the surrounding muscle tissue. Inductively coupled plasma mass spectroscopy confirmed that more GdDO3NI than control agent was retained in the central region and that more GdDO3NI was retained in the central region than at the periphery. These results show the utility of GdDO3NI to image tumor hypoxia and highlight the potential of GdDO3NI for application to image-guided interventions for radiation therapy or hypoxia-activated chemotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

DOTA:

Tetraazacyclododecanetetraacetic acid

GdDO3ABA:

Gadolinium tetraazacyclododecanetetraacetic acid (n-butyl)monoamide

GdDO3NI:

Gadolinium tetraazacyclododecanetetraacetic acid monoamide conjugate of 2-nitroimidazole

GdDTPA:

Gadolinium diethylenetriaminepentaacetic acid

GdHPDO3A:

Gadolinium 10-(2-hydroxypropyl)-1,4,7-tetraazacyclododecane-1,4,7-triacetic acid

ICP-MS:

Inductively coupled plasma mass spectrometry

MR:

Magnetic resonance

MRI:

Magnetic resonance imaging

PET:

Positron emission tomography

References

  1. Tatum JL, Kelloff GJ, Gillies RJ, Arbeit JM, Brown JM, Chao KS, Chapman JD, Eckelman WC, Fyles AW, Giaccia AJ, Hill RP, Koch CJ, Krishna MC, Krohn KA, Lewis JS, Mason RP, Melillo G, Padhani AR, Powis G, Rajendran JG, Reba R, Robinson SP, Semenza GL, Swartz HM, Vaupel P, Yang D, Croft B, Hoffman J, Liu G, Stone H, Sullivan D (2006) Int J Radiat Biol 82:699–757

    Article  CAS  PubMed  Google Scholar 

  2. Hockel M, Vaupel P (2001) J Natl Cancer Inst 93:266–276

    Article  CAS  PubMed  Google Scholar 

  3. Vaupel P, Mayer A (2007) Cancer Metastasis Rev 26:225–239

    Article  CAS  PubMed  Google Scholar 

  4. Liu Q, Sun JD, Wang J, Ahluwalia D, Baker AF, Cranmer LD, Ferraro D, Wang Y, Duan JX, Ammons WS, Curd JG, Matteucci MD, Hart CP (2012) Cancer Chemother Pharmacol 69:1487–1498

    Article  CAS  PubMed  Google Scholar 

  5. McKeage MJ, Jameson MB, Ramanathan RK, Rajendran J, Gu Y, Wilson WR, Melink TJ, Tchekmedyian NS (2012) BMC Cancer 12:496

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Le QT, Fisher R, Oliner KS, Young RJ, Cao H, Kong C, Graves E, Hicks RJ, McArthur GA, Peters L, O’Sullivan B, Giaccia A, Rischin D (2012) Clin Cancer Res 18:1798–1807

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. He F, Deng X, Wen B, Liu Y, Sun X, Xing L, Minami A, Huang Y, Chen Q, Zanzonico PB, Ling CC, Li GC (2008) Cancer Res 68:8597–8606

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Russell J, Carlin S, Burke SA, Wen B, Yang KM, Ling CC (2009) Int J Radiat Oncol Biol Phys 73:1177–1186

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Griffiths JR, Robinson SP (1999) Br J Radiol 72:627–630

    CAS  PubMed  Google Scholar 

  10. Krohn KA, Link JM, Mason RP (2008) J Nucl Med 49(Suppl 2):129S–148S

    Article  CAS  PubMed  Google Scholar 

  11. Mason RP, Zhao D, Pacheco-Torres J, Cui W, Kodibagkar VD, Gulaka PK, Hao G, Thorpe P, Hahn EW, Peschke P (2010) Q J Nucl Med Mol Imaging 54:259–280

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Zhao D, Jiang L, Mason RP (2004) Methods Enzymol 386:378–418

    Article  CAS  PubMed  Google Scholar 

  13. Takahashi E, Takano T, Nomura Y, Okano S, Nakajima O, Sato M (2006) Am J Physiol Cell Physiol 291:C781–C787

    Article  CAS  PubMed  Google Scholar 

  14. Bussink J, Kaanders JH, Strik AM, Vojnovic B, van der Kogel AJ (2000) Radiat Res 154:547–555

    Article  CAS  PubMed  Google Scholar 

  15. Xia M, Kodibagkar V, Liu H, Mason RP (2006) Phys Med Biol 51:45–60

    Article  CAS  PubMed  Google Scholar 

  16. Li L, Yu JM, Xing LG, Yang GR, Sun XD, Xu J, Zhu H, Yue JB (2006) Chin Med J (Engl) 119:1477–1480

    Google Scholar 

  17. Lewis JS, McCarthy DW, McCarthy TJ, Fujibayashi Y, Welch MJ (1999) J Nucl Med 40:177–183

    CAS  PubMed  Google Scholar 

  18. Baudelet C, Gallez B (2002) Magn Reson Med 48:980–986

    Article  PubMed  Google Scholar 

  19. Gallez B, Baudelet C, Jordan BF (2004) NMR Biomed 17:240–262

    Article  CAS  PubMed  Google Scholar 

  20. Hunjan S, Zhao D, Constantinescu A, Hahn EW, Antich PP, Mason RP (2001) Int J Radiat Oncol Biol Phys 49:1097–1108

    Article  CAS  PubMed  Google Scholar 

  21. Kodibagkar VD, Wang X, Pacheco-Torres J, Gulaka P, Mason RP (2008) NMR Biomed 21:899–907

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Kedderis GL, Miwa GT (1988) Drug Metab Rev 19:33–62

    Article  CAS  PubMed  Google Scholar 

  23. Brown JM (1975) Radiat Res 64:633–647

    Article  CAS  PubMed  Google Scholar 

  24. Piert M, Machulla HJ, Picchio M, Reischl G, Ziegler S, Kumar P, Wester HJ, Beck R, McEwan AJ, Wiebe LI, Schwaiger M (2005) J Nucl Med 46:106–113

    PubMed  Google Scholar 

  25. Evans SM, Kachur AV, Shiue CY, Hustinx R, Jenkins WT, Shive GG, Karp JS, Alavi A, Lord EM, Dolbier WR Jr, Koch CJ (2000) J Nucl Med 41:327–336

    CAS  PubMed  Google Scholar 

  26. Yang DJ, Wallace S, Cherif A, Li C, Gretzer MB, Kim EE, Podoloff DA (1995) Radiology 194:795–800

    CAS  PubMed  Google Scholar 

  27. Lewis J, Laforest R, Buettner T, Song S, Fujibayashi Y, Connett J, Welch M (2001) Proc Natl Acad Sci USA 98:1206–1211

    Article  CAS  PubMed  Google Scholar 

  28. Procissi D, Claus F, Burgman P, Koziorowski J, Chapman JD, Thakur SB, Matei C, Ling CC, Koutcher JA (2007) Clin Cancer Res 13:3738–3747

    Article  CAS  PubMed  Google Scholar 

  29. Rojas-Quijano FA, Tircso G, Tircsone Benyo E, Baranyai Z, Tran Hoang H, Kalman FK, Gulaka PK, Kodibagkar VD, Aime S, Kovacs Z, Sherry AD (2012) Chemistry 18:9669–9676

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Zhao D, Ran S, Constantinescu A, Hahn EW, Mason RP (2003) Neoplasia 5:308–318

    PubMed Central  PubMed  Google Scholar 

  31. Aime S, Crich SG, Gianolio E, Giovenzana GB, Tei L, Terreno E (2006) Coord Chem Rev 250:1562–1579

    Article  CAS  Google Scholar 

  32. Sherry AD, Brown RD, Geraldes CFG, Koenig SH, Kuan KT, Spiller M (1989) Inorg Chem 28:620–622

    Article  CAS  Google Scholar 

  33. Aime S, Anelli PL, Botta M, Fedeli F, Grandi M, Paoli P, Uggeri F (1992) Inorg Chem 31:2422–2428

    Article  CAS  Google Scholar 

  34. Norman TJ, Smith FC, Parker D, Harrison A, Royle L, Walker CA (1995) Supramol Chem 4:305–308

    Article  CAS  Google Scholar 

  35. Das T, Chakraborty S, Banerjee S, Mukherjee A, Samuel G, Sarma HD, Nair CK, Kagiya VT, Venkatesh M (2004) Bioorg Med Chem 12:6077–6084

    Article  CAS  PubMed  Google Scholar 

  36. Hoigebazar L, Jeong JM, Choi SY, Choi JY, Shetty D, Lee YS, Lee DS, Chung JK, Lee MC, Chung YK (2010) J Med Chem 53:6378–6385

    Article  CAS  PubMed  Google Scholar 

  37. Hoigebazar L, Jeong JM, Hong MK, Kim YJ, Lee JY, Shetty D, Lee YS, Lee DS, Chung JK, Lee MC (2011) Bioorg Med Chem 19:2176–2181

    Article  CAS  PubMed  Google Scholar 

  38. Jiang L, Zhao D, Constantinescu A, Mason RP (2004) Magn Reson Med 51:953–960

    Article  PubMed  Google Scholar 

  39. Davis SC, Samkoe KS, Tichauer KM, Sexton KJ, Gunn JR, Deharvengt SJ, Hasan T, Pogue BW (2013) Proc Natl Acad Sci USA 110:9025–9030

    Article  CAS  PubMed  Google Scholar 

  40. Vaupel P, Kallinowski F, Okunieff P (1989) Cancer Res 49:6449–6465

    CAS  PubMed  Google Scholar 

  41. Fluckiger JU, Loveless ME, Barnes SL, Lepage M, Yankeelov TE (2013) Phys Med Biol 58:1983–1998

    Article  PubMed  Google Scholar 

  42. Egeland TA, Gulliksrud K, Gaustad JV, Mathiesen B, Rofstad EK (2012) Magn Reson Med 67:519–530

    Article  PubMed  Google Scholar 

  43. Terreno E, Geninatti Crich S, Belfiore S, Biancone L, Cabella C, Esposito G, Manazza AD, Aime S (2006) Magn Reson Med 55:491–497

    Article  CAS  PubMed  Google Scholar 

  44. Gianolio E, Arena F, Strijkers GJ, Nicolay K, Högset A, Aime S (2011) Magn Reson Med 65:212–219

    Article  CAS  PubMed  Google Scholar 

  45. Cho H, Ackerstaff E, Carlin S, Lupu ME, Wang Y, Rizwan A, O’Donoghue J, Ling CC, Humm JL, Zanzonico PB, Koutcher JA (2009) Neoplasia 11:247–259

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported in part by grants from the Norman Hackerman ARP grant (010019-0056-2007), the National Institutes of Health (R21CA132096, R01CA139043 and R01CA115531), the Southwestern Small Animal Imaging Research Program (U24 CA126608), and the Robert A. Welch Foundation (AT-584). MRI experiments were performed at the Advanced Imaging Research Center with support from a National Institutes of Health National Institute of Biomedical Imaging and Bioengineering resource grant (P41EB015908). We would like to thank Li Liu and Abhijit Bugde for helpful advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikram D. Kodibagkar.

Additional information

Responsible Editor: Valerie C. Pierre.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 225 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gulaka, P.K., Rojas-Quijano, F., Kovacs, Z. et al. GdDO3NI, a nitroimidazole-based T 1 MRI contrast agent for imaging tumor hypoxia in vivo. J Biol Inorg Chem 19, 271–279 (2014). https://doi.org/10.1007/s00775-013-1058-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-013-1058-5

Keywords

Navigation