Skip to main content
Log in

NO binding to Mn-substituted homoprotocatechuate 2,3-dioxygenase: relationship to O2 reactivity

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Iron(II)-containing homoprotocatechuate 2,3-dioxygenase (FeHPCD) activates O2 to catalyze the aromatic ring opening of homoprotocatechuate (HPCA). The enzyme requires FeII for catalysis, but MnII can be substituted (MnHPCD) with essentially no change in the steady-state kinetic parameters. Near simultaneous O2 and HPCA activation has been proposed to occur through transfer of an electron or electrons from HPCA to O2 through the divalent metal. In O2 reactions with MnHPCD–HPCA and the 4-nitrocatechol (4NC) complex of the His200Asn (H200N) variant of FeHPCD, this transfer has resulted in the detection of a transient MIII–O2 ·− species that is not observed during turnover of the wild-type FeHPCD. The factors governing formation of the MIII–O2 ·− species are explored here by EPR spectroscopy using MnHPCD and nitric oxide (NO) as an O2 surrogate. Both the HPCA and the dihydroxymandelic substrate complexes of MnHPCD bind NO, thus representing the first reported stable MnNO complexes of a nonheme enzyme. In contrast, the free enzyme, the MnHPCD–4NC complex, and the MnH200N and MnH200Q variants with or without HPCA bound do not bind NO. The MnHPCD–ligand complexes that bind NO are also active in normal O2-linked turnover, whereas the others are inactive. Past studies have shown that FeHPCD and the analogous variants and catecholic ligand complexes all bind NO, and are active in normal turnover. This contrasting behavior may stem from the ability of the enzyme to maintain the approximately 0.8-V difference in the solution redox potentials of FeII and MnII. Owing to the higher potential of Mn, the formation of the NO adduct or the O2 adduct requires both strong charge donation from the bound catecholic ligand and additional stabilization by interaction with the active-site His200. The same nonoptimal electronic and structural forces that prevent NO and O2 binding in MnHPCD variants may lead to inefficient electron transfer from the catecholic substrate to the metal center in variants of FeHPCD during O2-linked turnover. Accordingly, past studies have shown that intermediate FeIII species are observed for these mutant enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

4NC:

4-Nitrocatechol

DEA NONOate:

Diethylamine NONOate diethylammonium salt

DHM:

Dihydroxymandelic acid

EPR:

Electron paramagnetic resonance

FeHPCD:

Homoprotocatechuate 2,3-dioxygenase from Brevibacterium fuscum

HPCA:

Homoprotocatechuate

HPCD:

Homoprotocatechuate 2,3-dioxygenase

ICP-AES:

Inductively coupled plasma atomic emission spectroscopy

MnHPCD:

Homoprotocatechuate 2,3-dioxygenase from Brevibacterium fuscum in which the FeII is replaced by MnII

RFQ:

Rapid freeze quench

References

  1. Lipscomb JD (2008) Curr Opin Struct Biol 18:644–649

    Article  PubMed  CAS  Google Scholar 

  2. Koehntop KD, Emerson JP, Que L (2005) J Biol Inorg Chem 10:87–93

    Article  PubMed  CAS  Google Scholar 

  3. Kovaleva EG, Lipscomb JD (2008) Nat Chem Biol 4:186–193. doi:10.1038/nchembio.71

    Article  PubMed  CAS  Google Scholar 

  4. Vetting MW, Wackett LP, Que L Jr, Lipscomb JD, Ohlendorf DH (2004) J Bacteriol 186:1945–1958

    Article  PubMed  CAS  Google Scholar 

  5. Wang YZ, Lipscomb JD (1997) Protein Expr Purif 10:1–9. doi:10.1006/prep.1996.0703

    Article  PubMed  CAS  Google Scholar 

  6. Boldt YR, Sadowsky MJ, Ellis LBM, Que L Jr, Wackett LP (1995) J Bacteriol 177:1225–1232

    PubMed  CAS  Google Scholar 

  7. Emerson JP, Kovaleva EG, Farquhar ER, Lipscomb JD, Que L Jr (2008) Proc Natl Acad Sci USA 105:7347–7352

    Article  PubMed  CAS  Google Scholar 

  8. Fielding AJ, Kovaleva EG, Farquhar ER, Lipscomb JD, Que L Jr (2011) J Biol Inorg Chem 16:341–355. doi:10.1007/s00775-010-0732-0

    Article  PubMed  CAS  Google Scholar 

  9. Mbughuni MM, Chakrabarti M, Hayden JA, Meier KK, Dalluge JJ, Hendrich MP, Münck E, Lipscomb JD (2011) Biochemistry 50:10262–10274. doi:10.1021/bi201436n

    Article  PubMed  CAS  Google Scholar 

  10. Gunderson WA, Zatsman AI, Emerson JP, Farquhar ER, Que L Jr, Lipscomb JD, Hendrich MP (2008) J Am Chem Soc 130:14465–14467. doi:10.1021/ja8052255

    Article  PubMed  CAS  Google Scholar 

  11. Mbughuni MM, Chakrabarti M, Hayden JA, Bominaar EL, Hendrich MP, Münck E, Lipscomb JD (2010) Proc Natl Acad Sci USA 107:16788–16793

    Article  PubMed  CAS  Google Scholar 

  12. Arciero DM, Lipscomb JD, Huynh Boi H, Kent TA, Münck E (1983) J Biol Chem 258:14981–14989

    PubMed  CAS  Google Scholar 

  13. Ford PC, Lorkovic IM (2002) Chem Rev 102:993–1018

    Article  PubMed  CAS  Google Scholar 

  14. Groce SL, Lipscomb JD (2005) Biochemistry 44:7175–7188. doi:10.1021/bi050180v

    Article  PubMed  CAS  Google Scholar 

  15. Whiting AK, Boldt YR, Hendrich MP, Wackett LP, Que L Jr (1996) Biochemistry 35:160–170

    Article  PubMed  CAS  Google Scholar 

  16. Krzystek J, Ozarowski A, Telser J (2006) Coord Chem Rev 250:2308–2324. doi:10.1016/j.ccr.2006.03.016

    Article  CAS  Google Scholar 

  17. Zheng M, Khangulov SV, Dismukes GC, Barynin VV (1994) Inorg Chem 33:382–387

    Article  CAS  Google Scholar 

  18. Peloquin JM, Campbell KA, Randall DW, Evanchik MA, Pecoraro VL, Armstrong WH, Britt RD (2000) J Am Chem Soc 122:10926–10942

    Article  CAS  Google Scholar 

  19. Campbell KA, Yikilmaz E, Grant CV, Gregor W, Miller A-F, Britt RD (1999) J Am Chem Soc 121:4714–4715

    Article  CAS  Google Scholar 

  20. Miller MA, Lipscomb JD (1996) J Biol Chem 271:5524–5535

    Article  PubMed  CAS  Google Scholar 

  21. Arciero DM, Orville AM, Lipscomb JD (1985) J Biol Chem 260:14035–14044

    PubMed  CAS  Google Scholar 

  22. Gelb MH, Toscano WA Jr, Sligar SG (1982) Proc Natl Acad Sci USA 79:5758–5762

    Article  PubMed  CAS  Google Scholar 

  23. Ioannidis N, Schansker G, Barynin VV, Petrouleas V (2000) J Biol Inorg Chem 5:354–363

    Article  PubMed  CAS  Google Scholar 

  24. Franz KJ, Lippard SJ (1998) J Am Chem Soc 120:9034–9040

    Article  CAS  Google Scholar 

  25. Merkle AC, Fry NL, Mascharak PK, Lehnert N (2011) Inorg Chem 50:12192–12203. doi:10.1021/ic201967f

    Article  PubMed  CAS  Google Scholar 

  26. Taguchi T, Gupta R, Lassalle-Kaiser B, Boyce DW, Yachandra VK, Tolman WB, Yano J, Hendrich MP, Borovik AS (2012) J Am Chem Soc 134:1996–1999. doi:10.1021/ja210957u

    Article  PubMed  CAS  Google Scholar 

  27. Tangen E, Conradie J, Franz K, Friedle S, Telser J, Lippard SJ, Ghosh A (2010) Inorg Chem 49:2701–2705

    Article  PubMed  CAS  Google Scholar 

  28. Brown CA, Pavlosky MA, Westre TE, Zhang Y, Hedman B, Hodgson KO, Solomon EI (1995) J Am Chem Soc 117:715–732

    Article  CAS  Google Scholar 

  29. Serres RG, Grapperhaus CA, Bothe E, Bill E, Weyhermuller T, Neese F, Wieghardt K (2004) J Am Chem Soc 126:5138–5153. doi:10.1021/ja030645+

    Article  PubMed  CAS  Google Scholar 

  30. Duboc C, Collomb M-N, Neese F (2010) Appl Magn Reson 37:229–245

    Article  Google Scholar 

  31. Gatjens J, Sjodin M, Pecoraro VL, Un S (2007) J Am Chem Soc 129:13825–13827

    Article  PubMed  Google Scholar 

  32. Un S, Tabares LC, Cortez Ns, Hiraoka BY, Yamakura F (2004) J Am Chem Soc 126:2720–2726

    Article  PubMed  CAS  Google Scholar 

  33. Vaillancourt FH, Barbosa CJ, Spiro TG, Bolin JT, Blades MW, Turner RF, Eltis LD (2002) J Am Chem Soc 124:2485–2496

    Article  PubMed  CAS  Google Scholar 

  34. Shu L, Chiou Y-M, Orville AM, Miller MA, Lipscomb JD, Que L Jr (1995) Biochemistry 34:6649–6659

    Article  PubMed  CAS  Google Scholar 

  35. Reynolds MF, Costas M, Ito M, Jo D-H, Tipton AA, Whiting AK, Que L (2003) J Biol Inorg Chem 8:263–272

    PubMed  CAS  Google Scholar 

  36. Bugg TD, Ramaswamy S (2008) Curr Opin Chem Biol 12:134–140. doi:10.1016/j.cbpa.2007.12.007

    Article  PubMed  CAS  Google Scholar 

  37. Vaillancourt FH, Bolin JT, Eltis LD (2006) Crit Rev Biochem Mol Biol 41:241–267

    Article  PubMed  CAS  Google Scholar 

  38. Costas M, Mehn MP, Jensen MP, Que L Jr (2004) Chem Rev 104:939–986. doi:10.1021/cr020628n

    Article  PubMed  CAS  Google Scholar 

  39. Boldt YR, Whiting AK, Wagner ML, Sadowsky MJ, Que L Jr, Wackett LP (1997) Biochemistry 36:2147–2153

    Article  PubMed  CAS  Google Scholar 

  40. Fielding AJ, Lipscomb JD, Que L Jr (2012) J Am Chem Soc 134:796–799. doi:10.1021/ja2095365

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants GM24689 (to J.D.L), GM33162 (to L.Q.), and GM77387 (to M.P.H.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael P. Hendrich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hayden, J.A., Farquhar, E.R., Que, L. et al. NO binding to Mn-substituted homoprotocatechuate 2,3-dioxygenase: relationship to O2 reactivity. J Biol Inorg Chem 18, 717–728 (2013). https://doi.org/10.1007/s00775-013-1016-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-013-1016-2

Keywords

Navigation