Skip to main content
Log in

Co+–H interaction inspired alternate coordination geometries of biologically important cob(I)alamin: possible structural and mechanistic consequences for methyltransferases

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

A detailed computational analysis employing density functional theory (DFT), atoms in molecules, and quantum mechanics/molecular mechanics (QM/MM) tools has been performed to investigate the primary coordination environment of cob(I)alamin (Co+Cbx), which is a ubiquitous B12 intermediate in methyltransferases and ATP:corrinoid adenosyltransferases. The DFT calculations suggest that the simplified (Co+Cbl) as well as the complete (Co+Cbi) complexes can adapt to the square pyramidal or octahedral coordination geometry owing to the unconventional H-bonding between the Co+ ion and its axial ligands. These Co+–H bonds contain appreciable amounts of electrostatic, charge transfer, long-range correlation, and dispersion components. The computed reduction potentials of the Co2+/Co+ couple imply that the Co+–H(H2O) interaction causes a greater anodic shift [5–98 mV vs. the normal hydrogen electrode (NHE) in chloroform solvent] than the analogous Co+–H(imidazole) interaction (1 mV vs. NHE) in the reduction potential of the Co2+/Co+ couple. This may explain why a β-axial H2O ligand has specifically been found in the active sites of certain methyltransferases. The QM/MM analysis of methionine synthase bound Co+Cbx (Protein Data Bank ID 1BMT, resolution 3.0 Å) indicates that the enzyme-bound Co+Cbx can also form a Co+–H bond, but can only exist in square pyramidal form because of the steric constraints imposed by the cellular environment. The present calculations thus support a recently proposed alternate mechanism for the enzyme-bound Co2+/Co+ reduction that involves the conversion of square pyramidal Co2+Cbx into square pyramidal Co+Cbx (Kumar and Kozlowski in Angew. Chem. Int. Ed. 50:8702–8705, 2011).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Herein Co2+Cbx and Co+Cbx have been used as abbreviations for full cob(II)alamin and cob(I)alamin, respectively. Co2+Cbl and Co+Cbl represent their simplified versions where the corrin side chains as well as the nucleotide loop have been replaced by hydrogens, and Co2+Cbi and Co+Cbi represent their mimics where only the nucleotide loop of the corrin ring has been terminated at the phosphodiester end

References

  1. Goulding CW, Postigo D, Matthews RG (1997) Biochemistry 36:8082–8091

    Article  PubMed  CAS  Google Scholar 

  2. Ragsdale SW, Wood HG (1985) J Biol Chem 260:3970–3977

    PubMed  CAS  Google Scholar 

  3. Sauer K, Thauer RK (1999) In: Banerjee R (ed) Chemistry and biochemistry of B12. Wiley, New York, p 655

  4. Burke SA, Lo SL, Krzycki JA (1998) J Bacteriol 180:3432–3440

    PubMed  CAS  Google Scholar 

  5. Ferguson DJ Jr, Gorlatova N, Grahame DA, Krzycki JA (2000) J Biol Chem 275:29053–29060

    Article  PubMed  CAS  Google Scholar 

  6. Paul L, Ferguson DJ, Kryzycki JA (2000) J Bacteriol 182:2520–2529

    Article  PubMed  CAS  Google Scholar 

  7. Tallant TC, Paul L, Krzycki JA (2001) J Biol Chem 276:4485–4493

    Article  PubMed  CAS  Google Scholar 

  8. Matthews RG, Koutmos M, Datta S (2008) Curr Opion Struct Biol 18:658–666

    Article  CAS  Google Scholar 

  9. Escalante-Semerena JC, Suh S-J, Roth JR (1990) J Bacteriol 172:273–280

    PubMed  CAS  Google Scholar 

  10. Suh S, Escalante-Semerena JC (1995) J Bacteriol 177:921–925

    PubMed  CAS  Google Scholar 

  11. Johnson CL, Buszako ML, Bobik TA (2004) J Bacteriol 186:7781–7787

    Google Scholar 

  12. Buan NR, Escalante-Semerena JC (2006) J Biol Chem 281:16971–16977

    Article  PubMed  CAS  Google Scholar 

  13. Drummond JT, Huang S, Blumenthal RM, Matthews RG (1993) Biochemistry 32:9290–9295

    Article  PubMed  CAS  Google Scholar 

  14. Menon S, Ragsdale SW (1999) J Biol Chem 274:11513–11518

    Article  PubMed  CAS  Google Scholar 

  15. Lexa D, Savéant JM (1983) Acc Chem Res 16:235–243

    Article  CAS  Google Scholar 

  16. Wolthers KR, Scrutton NS (2009) FEBS J 276:1942–1951

    Article  PubMed  CAS  Google Scholar 

  17. Burris DR, Delcomyn CA, Smith MH, Roberts AL (1996) Environ Sci Technol 30:3047–3052

    Article  CAS  Google Scholar 

  18. Burris DR, Delcomyn CA, Deng BL, Buck LE, Hatfield K (1998) Environ Toxicol Chem 17:1681–1688

    CAS  Google Scholar 

  19. Shey J, van der Donk WA (2000) J Am Chem Soc 122:12403–12404

    Article  CAS  Google Scholar 

  20. Doherty RE (2000) Environ Forensics 1:69–81

    Article  CAS  Google Scholar 

  21. Wirt MD, Sagi I, Chance MR (1992) J Biophys 63:412–417

    Article  CAS  Google Scholar 

  22. Liptak MD, Brunold TC (2006) J Am Chem Soc 128:9144–9156

    Article  PubMed  CAS  Google Scholar 

  23. Liptak MD, Datta S, Matthews RG, Brunold TC (2008) J Am Chem Soc 130:16374–16381

    Article  PubMed  CAS  Google Scholar 

  24. Koutmos M, Datta S, Pattridge KA, Smith JL, Matthews RG (2009) Proc Natl Acad Sci USA 106:18527–18532

    Article  PubMed  CAS  Google Scholar 

  25. St Maurice M, Mera PE, Park K, Brunold TC, Escalante-Semerena JC, Rayment I (2008) Biochemistry 47:5755–5766

    Google Scholar 

  26. Mera PE, Maurice MSt, Rayment I, Escalante-Semerena JC (2009) Biochemistry 48:3138–3145

    Article  PubMed  CAS  Google Scholar 

  27. Stich TA, Yamanishi M, Banerjee R, Brunold TC (2005) J Am Chem Soc 127:7660–7661

    Article  PubMed  CAS  Google Scholar 

  28. Stich TA, Buan NR, Escalante-Semerena JC, Brunold TC (2005) J Am Chem Soc 127:8710–8719

    Article  PubMed  CAS  Google Scholar 

  29. Stich TA, Seravalli J, Venkateshrao S, Spiro TG, Ragsdale SW, Brunold TC (2006) J Am Chem Soc 128:5010–5020

    Article  PubMed  CAS  Google Scholar 

  30. Shi S, Daniels LM, Espenson JH (1991) Inorg Chem 30:3407–3410

    Article  CAS  Google Scholar 

  31. Hu XL, Brunschwig BS, Peters JC (2007) J Am Chem Soc 129:8988–8998

    Article  PubMed  CAS  Google Scholar 

  32. Voloshin YZ, Varzatskii OA, Vorontsov II, Antipin MY (2005) Angew Chem Int Ed 44:3400–3402

    Article  CAS  Google Scholar 

  33. Dreos R, Geremia S, Randaccio L, Seiga P (2010) In: Rappoport Z,, Liebman JF (eds) The chemistry of hydroxylamines, oximes and hydroxamic acids, part 2. Wiley, New York, p 903

  34. Kumar M, Kozlowski PM (2011) Angew Chem Int Ed 50:8702–8705

    Article  CAS  Google Scholar 

  35. Calderazzo F, Facchinetti G, Marchetti F, Zanazzi PF (1981) J Chem Soc Chem Commun 181

  36. Brammer L, McCann MC, Bullock RM, McMullan RK, Sherwood P (1992) Organometallics 11:2339–2341

    Article  CAS  Google Scholar 

  37. Brammer L, Zhao D, Ladipo FT, Braddock-Wilking J (1995) Acta Crystallogr Sect B 51:632–640

    Article  Google Scholar 

  38. Keum C, Kim C, Kim C, Kwak H, Kwak H, Moonhee Kwon M, Namgung H (1992) Bull Korean Chem Soc 13:695–699

    CAS  Google Scholar 

  39. Brammer L, Charnock JM, Goggin PL, Goodfellow RJ, Koetzle TF, Orpen AG (1987) J Chem Soc Chem Commun 443–445

  40. Brammer L, Charnock JM, Goggin PL, Goodfellow RJ, Koetzle TF, Orpen AG (1991) J Chem Soc Dalton Trans 1789–1798

  41. Kozelka J, Bergès J, Attias R, Fraitag J (2000) Angew Chem Int Ed 39:198–201

    Article  CAS  Google Scholar 

  42. Rizzato S, Bergès J, Mason SA, Albinati A, Kozelka J (2010) Angew Chem Int Ed 49:7440–7443

    Article  CAS  Google Scholar 

  43. Wienken M, Zangrando E, Randaccio L, Menzer S, Lippert B (1993) J Chem Soc Dalton Trans 3349–3357

  44. Baidina A, Podberezskaya NV, Krylova LF, Borisov SV (1981) J Struct Chem 22:463–465

    Article  Google Scholar 

  45. Braga D, Grepioni F, Tedesco E, Biradha K, Desiraju GR (1997) Organometallics 16:1846–1856

    Article  CAS  Google Scholar 

  46. Brammer L (2003) J Chem Soc Dalton Trans 3145–3157

  47. Hagemeier CH, Kruer M, Thauer RK, Warkentin E, Ermler U (2006) Proc Natl Acad Sci USA 103:18917–18922

    Article  PubMed  CAS  Google Scholar 

  48. Svetlitchnaia T, Svetlitchnyi V, Meyer O, Dobbek H (2006) Proc Natl Acad Sci USA 103:14331–14336

    Article  PubMed  CAS  Google Scholar 

  49. Jarrett JT, Huang S, Matthews RG (1998) Biochemistry 37:5372–5382

    Article  PubMed  CAS  Google Scholar 

  50. Kräutler B, Keller W, Kratky C (1989) J Am Chem Soc 111:8938–8940

    Article  Google Scholar 

  51. Frisch MJ et al (2009) Gaussian 09, revision C.02. Gaussian, Wallingford

  52. Černy J, Hobza P (2005) Phys Chem Chem Phys 7:1624–1626

    PubMed  Google Scholar 

  53. Allen MJ, Tozer DJ (2002) J Chem Phys 117:11113–11120

    Article  CAS  Google Scholar 

  54. Hobza P, Šponer J, Reschel T (1995) J Comput Chem 16:1315–1325

    Article  CAS  Google Scholar 

  55. Kristyan S, Pulay P (1994) Chem Phys Lett 229:175–180

    Article  CAS  Google Scholar 

  56. Chai J-D, Head-Gordon M (2008) J Chem Phys 128:084106

    Article  PubMed  Google Scholar 

  57. Chai J-D, Head-Gordon M (2008) Phys Chem Chem Phys 10:6615–6620

    Article  PubMed  CAS  Google Scholar 

  58. Grimme SJ (2006) J Comput Chem 27:1787–1799

    Article  CAS  Google Scholar 

  59. Becke AD (1986) J Chem Phys 84:4524–4529

    Article  CAS  Google Scholar 

  60. Perdew JP (1986) Phys Rev B 33:8822–8824

    Article  Google Scholar 

  61. Becke AD (1997) J Chem Phys 107:8554

    Article  CAS  Google Scholar 

  62. Hamprecht FA, Cohen AJ, Tozer DJ, Handy NC (1998) J Chem Phys 109:6264–6271

    Article  CAS  Google Scholar 

  63. Schmider HL, Becke AD (1998) J Chem Phys 108:9624

    Article  CAS  Google Scholar 

  64. Marenich AV, Cramer CJ, Truhlar DG (2009) J Phys Chem 113:6378–6396

    Article  CAS  Google Scholar 

  65. Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University Press, New York

    Google Scholar 

  66. Wiberg K (1968) Tetrahedron 24:1083–1096

    Article  CAS  Google Scholar 

  67. Trasatti S (1986) Pure Appl Chem 58:955–966

    Article  CAS  Google Scholar 

  68. Lewis A, Bumpus JA, Truhlar DG, Cramer CJ (2004) J Chem Educ 81:596–603

    Article  CAS  Google Scholar 

  69. Lewis A, Bumpus JA, Truhlar DG, Cramer CJ (2007) J Chem Educ 84:934

    Google Scholar 

  70. Drennan CL, Huang S, Drummond JT, Matthews RG, Ludwig ML (1994) Science 266:1669–1674

    Article  PubMed  CAS  Google Scholar 

  71. Humphrey W, Dalke A, Schulten K (1996) J Mol Graph 14:33–38

    Article  PubMed  CAS  Google Scholar 

  72. Marques HM, Ngoma B, Eganb TJ, Brown KL (2001) J Mol Struct 561:71–91

    Article  CAS  Google Scholar 

  73. Svensson M, Humbel S, Froese RDJ, Matsubara T, Sieber S, Morokuma K (1996) J Phys Chem 100:19357–19363

    Article  CAS  Google Scholar 

  74. Vreven T, Byun KS, Komáromi I, Dapprich S, Montgomery JA, Morokuma K, Frisch MJ (2006) J Chem Theory Comput 2:815–826

    Article  CAS  Google Scholar 

  75. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM Jr, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) J Am Chem Soc 117:5179–5197

    Article  CAS  Google Scholar 

  76. Besler BH, Merz KM Jr, Kollman PA (1990) J Comput Chem 11:431–439

    Article  CAS  Google Scholar 

  77. Battaglia LP, Corradi AB, Menabue L, Pellacani GC, Prampolini P, Saladini M (1982) J Chem Soc Dalton Trans 781–785

  78. Marongiu G, Lingafelter EG (1982) Acta Crystallogr Sect B 38:620–622

    Article  Google Scholar 

  79. Chiari B, Hatfield WE, Piovesana O, Tarantelli T, terHaar LW, Zanazzi PF (1983) Inorg Chem 22:1468

  80. Çolak AT, Yeşilel OZ, Büyükgüngör O (2011) J Mol Struct 991:68–72

    Article  Google Scholar 

  81. Schrauzer GN, Deutsch E (1969) J Am Chem Soc 91:3341–3350

    Article  PubMed  CAS  Google Scholar 

  82. Popelier P (2000) Atoms in molecules: an introduction. Pearson, Harlow

    Google Scholar 

  83. Koch U, Popelier PLA (1995) J Phys Chem 99:9747–9754

    Article  CAS  Google Scholar 

  84. Rozas I, Alkorta I, Elguero J (2000) J Am Chem Soc 122:11154–11161

    Article  CAS  Google Scholar 

  85. Iwaoka M, Komatsu H, Katsuda T, Tomoda S (1996) J Am Chem Soc 118:8077–8084

    Article  CAS  Google Scholar 

  86. Iwaoka M, Komatsu H, Katsuda T, Tomoda S (2004) J Am Chem Soc 126:5309–5317

    Article  PubMed  CAS  Google Scholar 

  87. Iwaoka M, Komatsu H, Katsuda T, Tomoda S (2002) J Am Chem Soc 124:1902–1909

    Article  PubMed  CAS  Google Scholar 

  88. Faure D, Lexa D, Savéant JM (1982) J Electroanal Chem 140:285–295

    Article  CAS  Google Scholar 

Download references

Acknowledgments

H.H. acknowledges a Nanyang assistant professorship for financial support and the High Performance Computing Centre at Nanyang Technological University for computer resources. P.M.K acknowledges the excellent computational facilities provided by the Cardinal Research Cluster at the University of Louisville.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pawel M. Kozlowski.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 178 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, M., Hirao, H. & Kozlowski, P.M. Co+–H interaction inspired alternate coordination geometries of biologically important cob(I)alamin: possible structural and mechanistic consequences for methyltransferases. J Biol Inorg Chem 17, 1107–1121 (2012). https://doi.org/10.1007/s00775-012-0924-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-012-0924-x

Keywords

Navigation