Skip to main content
Log in

Electron self-exchange and self-amplified posttranslational modification in the hemoglobins from Synechocystis sp. PCC 6803 and Synechococcus sp. PCC 7002

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Many heme proteins undergo covalent attachment of the heme group to a protein side chain. Such posttranslational modifications alter the thermodynamic and chemical properties of the holoprotein. Their importance in biological processes makes them attractive targets for mechanistic studies. We have proposed a reductively driven mechanism for the covalent heme attachment in the monomeric hemoglobins produced by the cyanobacteria Synechococcus sp. PCC 7002 and Synechocystis sp. PCC 6803 (GlbN) (Nothnagel et al. in J Biol Inorg Chem 16:539–552, 2011). These GlbNs coordinate the heme iron with two axial histidines, a feature that distinguishes them from most hemoglobins and conditions their redox properties. Here, we uncovered evidence for an electron exchange chain reaction leading to complete heme modification upon substoichiometric reduction of GlbN prepared in the ferric state. The GlbN electron self-exchange rate constants measured by NMR spectroscopy were on the order of 102–103 M−1 s−1 and were consistent with the proposed autocatalytic process. NMR data on ferrous and ferric Synechococcus GlbN in solution indicated little dependence of the structure on the redox state of the iron or cross-link status of the heme group. This allowed the determination of lower bounds to the cross-exchange rate constants according to Marcus theory. The observations illustrate the ability of bishistidine hemoglobins to undergo facile interprotein electron transfer and the chemical relevance of such transfer for covalent heme attachment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Scheme 2
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ESE:

Electron self-exchange

ET:

Electron transfer

GlbN:

Hemoglobin produced by Synechococcus sp. PCC 7002 or Synechocystis sp. PCC 6803

GlbN-A:

GlbN with covalently attached heme

GlbN-R:

GlbN with noncovalently attached heme

GODCAT:

Glucose oxidase/d-glucose/catalase

HSQC:

Heteronuclear single quantum coherence

PTM:

Posttranslational modification

References

  1. Vinogradov SN, Moens L (2008) J Biol Chem 283:8773–8777

    Article  PubMed  CAS  Google Scholar 

  2. Kakar S, Sturms R, Tiffany A, Nix JC, DiSpirito AA, Hargrove MS (2011) Biochemistry 50:4273–4280

    Article  PubMed  CAS  Google Scholar 

  3. Scott NL, Falzone CJ, Vuletich DA, Zhao J, Bryant DA, Lecomte JTJ (2002) Biochemistry 41:6902–6910

    Article  PubMed  CAS  Google Scholar 

  4. Scott NL, Xu Y, Shen G, Vuletich DA, Falzone CJ, Li Z, Ludwig M, Pond MP, Preimesberger MR, Bryant DA, Lecomte JTJ (2010) Biochemistry 49:7000–7011

    Article  PubMed  CAS  Google Scholar 

  5. Couture M, Das TK, Savard PY, Ouellet Y, Wittenberg JB, Wittenberg BA, Rousseau DL, Guertin M (2000) Eur J Biochem 267:4770–4780

    Article  PubMed  CAS  Google Scholar 

  6. Scott NL, Lecomte JTJ (2000) Protein Sci 9:587–597

    Article  PubMed  CAS  Google Scholar 

  7. Vu BC, Jones AD, Lecomte JTJ (2002) J Am Chem Soc 124:8544–8545

    Article  PubMed  CAS  Google Scholar 

  8. Vu BC, Vuletich DA, Kuriakose SA, Falzone CJ, Lecomte JTJ (2004) J Biol Inorg Chem 9:183–194

    Article  PubMed  CAS  Google Scholar 

  9. Bowman SE, Bren KL (2008) Nat Prod Rep 25:1118–1130

    Article  PubMed  CAS  Google Scholar 

  10. Pearson AR, Elmore BO, Yang C, Ferrara JD, Hooper AB, Wilmot CM (2007) Biochemistry 46:8340–8349

    Article  PubMed  CAS  Google Scholar 

  11. Huang L, Wojciechowski G, Ortiz de Montellano PR (2006) J Biol Chem 281:18983–18988

    Article  PubMed  CAS  Google Scholar 

  12. Nothnagel HJ, Preimesberger MR, Pond MP, Winer BY, Adney EM, Lecomte JTJ (2011) J Biol Inorg Chem 16:539–552

    Article  PubMed  CAS  Google Scholar 

  13. Vuletich DA, Falzone CJ, Lecomte JTJ (2006) Biochemistry 45:14075–14084

    Article  PubMed  CAS  Google Scholar 

  14. Englander SW, Calhoun DB, Englander JJ (1987) Anal Biochem 161:300–306

    Article  PubMed  CAS  Google Scholar 

  15. Di Iorio EE (1981) Methods Enzymol 76:57–72

    Article  PubMed  Google Scholar 

  16. Johnson KA, Simpson ZB, Blom T (2009) Anal Biochem 387:30–41

    Article  PubMed  CAS  Google Scholar 

  17. Johnson KA (2009) Methods Enzymol 467:601–626

    Article  PubMed  CAS  Google Scholar 

  18. Bilsel O, Zitzewitz JA, Bowers KE, Matthews CR (1999) Biochemistry 38:1018–1029

    Article  PubMed  CAS  Google Scholar 

  19. Falzone CJ, Vu BC, Scott NL, Lecomte JTJ (2002) J Mol Biol 324:1015–1029

    Article  PubMed  CAS  Google Scholar 

  20. Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) J Biomol NMR 6:277–293

    Article  PubMed  CAS  Google Scholar 

  21. Goddard TD, Kneller DG (2006) Sparky 3. University of California, San Francisco

  22. Falzone CJ, Lecomte JTJ (2002) J Biomol NMR 23:71–72

    Article  PubMed  CAS  Google Scholar 

  23. Pond MP, Vuletich DA, Falzone CJ, Majumdar A, Lecomte JTJ (2009) Biomol NMR Assign 3:211–214

    Article  PubMed  CAS  Google Scholar 

  24. Geen H, Freeman R (1991) J Magn Reson 93:93–141

    Google Scholar 

  25. Farrow NA, Zhang O, Forman-Kay JD, Kay LE (1994) J Biomol NMR 4:727–734

    Article  PubMed  CAS  Google Scholar 

  26. Emsley L, Bodenhausen G (1990) Chem Phys Lett 165:469–476

    Article  CAS  Google Scholar 

  27. Kay LE, Torchia DA, Bax A (1989) Biochemistry 28:8972–8979

    Article  PubMed  CAS  Google Scholar 

  28. Piotto M, Saudek V, Sklenár V (1992) J Biomol NMR 2:661–665

    Article  PubMed  CAS  Google Scholar 

  29. Shen Y, Delaglio F, Cornilescu G, Bax A (2009) J Biomol NMR 44:213–223

    Article  PubMed  CAS  Google Scholar 

  30. Emerson SD, La Mar GN (1990) Biochemistry 29:1556–1566

    Article  PubMed  CAS  Google Scholar 

  31. Brünger AT (1992) X-PLOR, version 3.1. A system for X-ray crystallography and NMR. Yale University Press, New Haven

  32. Banci L, Bertini I, Cavallaro G, Giachetti A, Luchinat C, Parigi G (2004) J Biomol NMR 28:249–261

    Article  PubMed  CAS  Google Scholar 

  33. Schwieters CD, Kuszewski JJ, Clore GM (2006) Prog NMR Spectrosc 619(48):47–62

    Article  Google Scholar 

  34. Schmitz C, Stanton-Cook MJ, Su XC, Otting G, Huber T (2008) J Biomol NMR 621(41):179–189

    Article  Google Scholar 

  35. Jeener J, Meier BH, Bachmann P, Ernst RR (1979) J Chem Phys 71:4546–4553

    Article  CAS  Google Scholar 

  36. Vu BC, Nothnagel HJ, Vuletich DA, Falzone CJ, Lecomte JTJ (2004) Biochemistry 43:12622–12633

    Article  PubMed  CAS  Google Scholar 

  37. Simonneaux G, Bondon A (2005) Chem Rev 105:2627–2646

    Article  PubMed  CAS  Google Scholar 

  38. Marcus RA, Sutin N (1985) Biochim Biophys Acta 811:265–322

    CAS  Google Scholar 

  39. Hoy JA, Smagghe BJ, Halder P, Hargrove MS (2007) Protein Sci 16:250–260

    Article  PubMed  CAS  Google Scholar 

  40. Davidson VL (2000) Acc Chem Res 33:87–93

    Article  PubMed  CAS  Google Scholar 

  41. Bonamore A, Boffi A (2008) IUBMB Life 60:19–28

    Article  PubMed  CAS  Google Scholar 

  42. Gardner PR (2005) J Inorg Biochem 99:247–266

    Article  PubMed  CAS  Google Scholar 

  43. Gardner PR, Gardner AM, Brashear WT, Suzuki T, Hvitved AN, Setchell KD, Olson JS (2006) J Inorg Biochem 100:542–550

    Article  PubMed  CAS  Google Scholar 

  44. Ouellet H, Ouellet Y, Richard C, Labarre M, Wittenberg B, Wittenberg J, Guertin M (2002) Proc Natl Acad Sci USA 99:5902–5907

    Article  PubMed  CAS  Google Scholar 

  45. Fago A, Mathews AJ, Moens L, Dewilde S, Brittain T (2006) FEBS Lett 580:4884–4888

    Article  PubMed  CAS  Google Scholar 

  46. Kiger L, Tilleman L, Geuens E, Hoogewijs D, Lechauve C, Moens L, Dewilde S, Marden MC (2011) PLoS ONE 6:e20478

    Article  PubMed  CAS  Google Scholar 

  47. Kakar S, Hoffman FG, Storz JF, Fabian M, Hargrove MS (2010) Biophys Chem 152:1–14

    Article  PubMed  CAS  Google Scholar 

  48. Nothnagel HJ, Love N, Lecomte JT (2009) J Inorg Biochem 103:107–116

    Article  PubMed  CAS  Google Scholar 

  49. Kraulis P (1991) J Appl Crystallogr 24:946–950

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by National Science Foundation grant MCB-0349409. NMR facilities and resources at Johns Hopkins University were provided by the Biomolecular NMR Center. The authors thank Selena Rice for assistance with the optical measurements, Richard Himes, Ryan Peterson, and Kenneth Karlin for the use of their stopped-flow equipment, and Christopher Falzone for useful discussions and careful reading of the manuscript. Henry Nothnagel’s insight into heme chemistry was essential in the initial phases of the work. Figure 1a was prepared with Molscript [49].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juliette T. J. Lecomte.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supporting Information (PDF 3393 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Preimesberger, M.R., Pond, M.P., Majumdar, A. et al. Electron self-exchange and self-amplified posttranslational modification in the hemoglobins from Synechocystis sp. PCC 6803 and Synechococcus sp. PCC 7002. J Biol Inorg Chem 17, 599–609 (2012). https://doi.org/10.1007/s00775-012-0880-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-012-0880-5

Keywords

Navigation