Skip to main content
Log in

Intermolecular electron transfer in two-iron superoxide reductase: a putative role for the desulforedoxin center as an electron donor to the iron active site

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Superoxide reductase (SOR) is a superoxide detoxification system present in some microorganisms. Its active site consists of an unusual mononuclear iron center with an FeN4S1 coordination which catalyzes the one-electron reduction of superoxide to form hydrogen peroxide. Different classes of SORs have been described depending on the presence of an additional rubredoxin-like, desulforedoxin iron center, whose function has remained unknown until now. In this work, we investigated the mechanism of the reduction of the SOR iron active site using the NADPH:flavodoxin oxidoreductase from Escherichia coli, which was previously shown to efficiently transfer electrons to the Desulfoarculus baarsii SOR. When present, the additional rubredoxin-like iron center could function as an electronic relay between cellular reductases and the iron active site for superoxide reduction. This electron transfer was mainly intermolecular, between the rubredoxin-like iron center of one SOR and the iron active site of another SOR. These data provide the first experimental evidence for a possible role of the rubredoxin-like iron center in the superoxide detoxifying activity of SOR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1

Similar content being viewed by others

Notes

  1. The semireduced form of SOR corresponds to the air-isolated protein, where center I is ferric and center II is ferrous.

Abbreviations

Fpr:

NADPH:flavodoxin oxidoreductase

ROS:

Reduced oxygen species

SOR:

Superoxide reductase

Tris:

Tris(hydoxymethyl)aminomethane

References

  1. Winterbourn CCC (2008) Nat Chem Biol 4:278–286

    Article  PubMed  CAS  Google Scholar 

  2. Imlay JA (2008) Annu Rev Biochem 77:755–776

    Article  PubMed  CAS  Google Scholar 

  3. Fridovich I (1995) Annu Rev Biochem 64:97–112

    Article  PubMed  CAS  Google Scholar 

  4. Jenney FE, Verhagen MFJM, Cui X, Adams MWW (1999) Science 286:306–309

    Article  PubMed  CAS  Google Scholar 

  5. Lombard M, Fontecave M, Touati D, Nivière V (2000) J Biol Chem 275:115–121

    Article  PubMed  CAS  Google Scholar 

  6. Nivière V, Fontecave M (2004) J Biol Inorg Chem 9:119–123

    Article  PubMed  Google Scholar 

  7. Kurtz DM Jr (2006) J Inorg Biochem 100:679–693

    Article  PubMed  CAS  Google Scholar 

  8. Pereira AS, Tavares P, Folgosa F, Almeida RM, Moura I, Moura JJG (2007) Eur J Inorg Chem 18:2569–2581

    Article  Google Scholar 

  9. Pinto AF, Rodrigues JV, Teixeira M (2010) Biochim Biophys Acta 1804:285–297

    PubMed  CAS  Google Scholar 

  10. Wildschut JD, Lang RM, Voordouw JK, Voordouw G (2006) J Bacteriol 188:6253–6260

    Article  PubMed  CAS  Google Scholar 

  11. Coelho A, Matias P, Fülöp V, Thompson A, Gonzalez A, Carrondo MA (1997) J Biol Inorg Chem 2:680–689

    Article  CAS  Google Scholar 

  12. Yeh AP, Hu Y, Jenney FE Jr, Adams MWW, Rees DC (2000) Biochemistry 39:2499–2508

    Article  PubMed  CAS  Google Scholar 

  13. Santos-Silva T, Trincao J, Carvalho AL, Bonifacio C, Auchère F, Raleiras P, Moura I, Moura JJG, Romao J (2006) J Biol Inorg Chem 11:548–558

    Article  PubMed  CAS  Google Scholar 

  14. Katona G, Carpentier P, Nivière V, Amara P, Adam V, Ohana J, Tsanov N, Bourgeois D (2007) Science 316:449–453

    Article  PubMed  CAS  Google Scholar 

  15. Tavares P, Ravi N, Moura JJG, Le Gall J, Huang YH, Crouse BR, Johnson MK, Huynh BH, Moura I (1994) J Biol Chem 269:10504–10510

    PubMed  CAS  Google Scholar 

  16. Emerson JP, Cabelli DE, Kurtz DM Jr (2003) Proc Natl Acad Sci USA 100:3802–3807

    Article  PubMed  CAS  Google Scholar 

  17. Nivière V, Asso M, Weill CO, Lombard M, Guigliarelli B, Favaudon V, Houée-Levin C (2004) Biochemistry 43:808–818

    Article  PubMed  Google Scholar 

  18. Rodrigues JV, Saraiva LM, Abreu IA, Teixeira M, Cabelli DE (2007) J Biol Inorg Chem 12:248–256

    Article  PubMed  CAS  Google Scholar 

  19. Bonnot F, Houée-Levin C, Favaudon V, Nivière V (2010) Biochim Biophys Acta 1804:762–767

    PubMed  CAS  Google Scholar 

  20. Rodrigues JV, Abreu IA, Cabelli D, Teixeira M (2006) Biochemistry 45:9266–9278

    Article  PubMed  CAS  Google Scholar 

  21. Emerson JP, Coulter ED, Cabelli DE, Phillips RS, Kurtz DM Jr (2002) Biochemistry 41:4348–4357

    Article  PubMed  CAS  Google Scholar 

  22. Archer M, Huber R, Tavares P, Moura I, Moura JJ, Carrondo MA, Sieker LC, LeGall J, Romao MJ (1995) J Mol Biol 251:690–702

    Article  PubMed  CAS  Google Scholar 

  23. Emerson JP, Coulter ED, Phillips RS, Kurtz DM Jr (2003) J Biol Chem 278:39662–39668

    Article  PubMed  CAS  Google Scholar 

  24. Rodrigues JV, Abreu IA, Saraiva LM, Teixeira M (2005) Biochem Biophys Res Commun 329:1300–1305

    Article  PubMed  CAS  Google Scholar 

  25. Grunden AM, Jenney FE Jr, Ma K, Ji M, Weinberg MV, Adams MW (2005) Appl Environ Microbiol 71:1522–1530

    Article  PubMed  CAS  Google Scholar 

  26. Auchère F, Sikkink R, Cordas C, Raleiras P, Tavares P, Moura I, Moura JJ (2004) J Biol Inorg Chem 9:839–849

    Article  PubMed  Google Scholar 

  27. Auchère F, Pauleta SR, Tavares P, Moura I, Moura JJ (2006) J Biol Inorg Chem 11:433–444

    Article  PubMed  Google Scholar 

  28. Pagen CC, Moser CC, Chen X, Dutton PL (1999) Nature 402:47–52

    Article  Google Scholar 

  29. Clay MD, Jenney FE Jr, Noh HJ, Hagedoom PL, George GN, Adams MWW, Johnson MK (2002) Biochemistry 41:9833–9841

    Article  PubMed  CAS  Google Scholar 

  30. Mathé C, Weill CO, Mattioli TA, Berthomieu C, Houée-Levin C, Tremey E, Nivière V (2007) J Biol Chem 282:22207–22216

    Article  PubMed  Google Scholar 

  31. Pianzzola MJ, Soubes M, Touati D (1996) J Bacteriol 178:6736–6742

    PubMed  CAS  Google Scholar 

  32. McIver L, Leadbeater C, Campopiano DJ, Baxter RL, Daff SN, Chapman SK, Munro AW (1998) Eur J Biochem 257:577–585

    Article  PubMed  CAS  Google Scholar 

  33. Gray HB, Winkler JR (2003) Q Rev Biophys 36:341–372

    Article  PubMed  CAS  Google Scholar 

  34. Kurtz DM Jr (2007) Dalton Trans 4115–4121

Download references

Acknowledgments

We thank Jean-Marc Moulis for providing us with rubredoxin from Clostridium pasteurianum and Vincent Favaudon for kind assistance in pulse radiolysis experiments. V.N. and S.D. acknowledge support from the Agence Nationale de la Recherche, programme Physique et Chimie du Vivant 2008. We thank the language center of René Descartes University and Sam Shen for proofreading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Nivière.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 57 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonnot, F., Duval, S., Lombard, M. et al. Intermolecular electron transfer in two-iron superoxide reductase: a putative role for the desulforedoxin center as an electron donor to the iron active site. J Biol Inorg Chem 16, 889–898 (2011). https://doi.org/10.1007/s00775-011-0788-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-011-0788-5

Keywords

Navigation