Skip to main content
Log in

Substrate binding and activation in the active site of cytochrome c nitrite reductase: a density functional study

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Cytochrome c nitrite reductase is a homodimeric enzyme, containing five covalently attached c-type hemes per subunit. Four of the heme irons are bishistidine-ligated, whereas the fifth, the active site of the protein, has an unusual lysine coordination and calcium site nearby. A fascinating feature of this enzyme is that the full six-electron reduction of the nitrite is achieved without release of any detectable reaction intermediate. Moreover, the enzyme is known to work over a wide pH range. Both findings suggest a unique flexibility of the active site in the complicated six-electron, seven-proton reduction process. In the present work, we employed density functional theory to study the energetics and kinetics of the initial stages of nitrite reduction. The possible role of second-sphere active-site amino acids as proton donors was investigated by taking different possible protonation states and geometrical conformations into account. It was found that the most probable proton donor is His277, whose spatial orientation and fine-tuned acidity lead to energetically feasible, low-barrier protonation reactions. However, substrate protonation may also be accomplished by Arg114. The calculated barriers for this pathway are only slightly higher than the experimentally determined value of 15.2 kcal/mol for the rate-limiting step. Hence, having proton-donating side chains of different acidity within the active site may increase the operational pH range of the enzyme. Interestingly, Tyr218, which was proposed to play an important role in the overall mechanism, appears not to take part in the reaction during the initial stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ye RW, Thomas SM (2001) Curr Opin Microbiol 4:307–312

    Article  PubMed  CAS  Google Scholar 

  2. Jetten MSM (2008) Environ Microbiol 10(11):2903–2909

    Article  PubMed  CAS  Google Scholar 

  3. Simon J (2002) Microbiol Rev 26:285–309

    CAS  Google Scholar 

  4. Richardson DJ (2000) Microbiology 146:551–571

    PubMed  CAS  Google Scholar 

  5. Fritz G, Einsle O, Rudolf M, Schiffer A, Kroneck PMH (2005) J Mol Microbiol Biotechnol 10:223–233

    Article  PubMed  CAS  Google Scholar 

  6. Bamford VA, Angove HC, Seward HE, Thomson AJ, Cole JA, Butt JN, Hemmings AM, Richardson DJ (2002) Biochemistry 41:2921–2931

    Article  PubMed  CAS  Google Scholar 

  7. Einsle O, Stach P, Messerschmidt A, Simon J, Kroger A, Huber R, Kroneck PM (2000) J Biol Chem 275:39608–39616

    Article  PubMed  CAS  Google Scholar 

  8. Einsle O, Messerschmidt A, Stach P, Bourenkov GP, Bartunik HD, Huber R, Kroneck PM (1999) Nature 400:476–480

    Article  PubMed  CAS  Google Scholar 

  9. Cuhna CA, Macieira S, Dias JM, Almeida G, Goncalves LL, Costa C, Lampreia J, Huber R, Moura JJG, Moura I, Romao MJ (2003) J Biol Chem 278:17455–17465

    Article  Google Scholar 

  10. Almeida MG, Macieira S, Goncalves LL, Huber R, Cunha CA, Romao MJ, Costa C, Lampreia J, Moura JJG, Moura I (2003) Eur J Biochem 270:3904–3915

    Article  PubMed  CAS  Google Scholar 

  11. Rodrigues ML, Oliveira TF, Pereira IA, Archer M (2006) EMBO J 25:5951–5960

    Article  PubMed  CAS  Google Scholar 

  12. Pereira IA, LeGall J, Xavier AV, Teixeira M (2000) Biochim Biophys Acta 1481:119–130

    Article  PubMed  CAS  Google Scholar 

  13. Rodrigues ML, Oliveira T, Matias PM, Martins C, Valente FM, Pereira IA, Archer M (2006) Acta Crystallogr Sect F Struct Biol Cryst Commun 62:565–568

    Article  PubMed  CAS  Google Scholar 

  14. Clarke TA, Hemmings AM, Burlat B, Butt JN, Cole JA, Richardson DJ (2006) Biochem Soc Trans 34(1):143–145

    Article  PubMed  CAS  Google Scholar 

  15. Burlat B, Gwyer JD, Poock S, Clarke T, Cole JA, Hemmings AM, Cheesman MR, Butt JN, Richardson DJ (2005) Biochem Soc Trans 33(1):137–140

    Article  PubMed  CAS  Google Scholar 

  16. Polyakov KM, Boyko KM, Tikhonova TV, Slutsky A, Antipov AN, Zvyagilskaya RA, Popov AN, Bourenkov GP, Lamzin VS, Popov VO (2009) J Mol Biol 289:846–862

    Article  Google Scholar 

  17. Einsle O, Messerschmidt A, Huber R, Kroneck PMH, Neese F (2002) J Am Chem Soc 124:11737–11745

    Article  PubMed  CAS  Google Scholar 

  18. Rudolf M, Einsle O, Neese F, Kroneck PMH (2002) Biochem Soc Trans 30:649–653

    Article  PubMed  CAS  Google Scholar 

  19. Enemark JH, Feltham RD (1974) Coord Chem Rev 13:339–406

    Article  CAS  Google Scholar 

  20. Roncaroli F, Videla M, Slep LD, Olabe JA (2007) Coord Chem Rev 251:1903–1930

    Article  CAS  Google Scholar 

  21. Wasser IM, de Vries S, Moenne-Loccoz P, Schroder I, Karlin KD (2002) Chem Rev 102:1201–1234

    Article  PubMed  CAS  Google Scholar 

  22. Averill BA (1996) Chem Rev 96:2951–2964

    Article  PubMed  CAS  Google Scholar 

  23. Newmyer SI, Ortiz de Montello PR (1995) J Biol Chem 270(33):19430–19438

    Article  PubMed  CAS  Google Scholar 

  24. Heath RJ, Rock CO (1998) J Bacteriol 180(6):1425–1430

    PubMed  CAS  Google Scholar 

  25. Tauler A, Lin K, Pilkis SJ (1990) J Biol Chem 265(26):15617–15622

    PubMed  CAS  Google Scholar 

  26. Mart MA, Crespo A, Bari SE, Doctorovich FA, Estrin DA (2004) J Phys Chem 108:18073–18080

    Google Scholar 

  27. Hudaky P, Perczel A (2007) Int J Quantum Chem 107:2178–2183

    Article  CAS  Google Scholar 

  28. Markley JL (1975) Acc Chem Res 8:70–80

    Article  CAS  Google Scholar 

  29. Almeida MG, Silveira CM, Guigliarelli B, Bertrand P, Moura JJG, Moura I, Leger C (2007) FEBS Lett 581:284–288

    Article  PubMed  CAS  Google Scholar 

  30. Stach P, Einsle O, Schumacher W, Kurun E, Kroneck PMH (2000) J Inorg Biochem 79:381–385

    Article  PubMed  CAS  Google Scholar 

  31. Lukat P, Rudolf M, Stach P, Messerschmidt A, Kroneck PMH, Simon J, Einsle O (2008) Biochemistry 47:2080–2086

    Article  PubMed  CAS  Google Scholar 

  32. Sjodin M, Ghanem R, Polivka T, Pan J, Styring S, Sun L, Sundstrom V, Hammarstrom L (2004) Phys Chem Chem Phys 6:4851–4858

    Article  Google Scholar 

  33. Clarke TA, Kemp GL, Van Wonderen JH, Doyle R-MAS, Cole JA, Tovell N, Cheesman MR, Butt JN, Richardson DJ, Hemmings AM (2008) Biochemistry 47:3789–3799

    Article  PubMed  CAS  Google Scholar 

  34. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) Nucleic Acids Res 28:235–242

    Article  PubMed  CAS  Google Scholar 

  35. Neese F (2009) ORCA—an ab initio, density functional and semiempirical program package 2.7. University of Bonn

  36. Neese F (2006) J Biol Inorg Chem 11:702–711

    Article  PubMed  CAS  Google Scholar 

  37. Perdew JP (1986) Phys Rev B 33:8822–8824

    Article  Google Scholar 

  38. Becke AD (1986) J Chem Phys 84(8):4524–4529

    Article  CAS  Google Scholar 

  39. Neese F (2003) J Comput Chem 24:1740–1747

    Article  PubMed  CAS  Google Scholar 

  40. Baerends EJ, Ellis DE, Ros R (1973) Chem Phys 2:41–51

    Article  CAS  Google Scholar 

  41. Dunlap B, Connolly JWD, Sabin JR (1979) J Chem Phys 71(8):3396–3402

    Article  CAS  Google Scholar 

  42. Schafer A, Huber C, Ahlrichs R (1994) J Chem Phys 100:5829–5835

    Article  Google Scholar 

  43. Eichkorn K, Treutler O, Öhm H, Häser M, Ahlrichs R (1995) Chem Phys Lett 240:283–290

    Article  CAS  Google Scholar 

  44. Eichkorn K, Weigend F, Treutler O, Ahlrichs R (1997) Theor Chem Acc 97:119–124

    CAS  Google Scholar 

  45. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  46. Becke AD (1993) J Chem Phys 98(7):5648–5652

    Article  CAS  Google Scholar 

  47. Siegbahn PEM, Blomberg MRA (2000) Chem Rev 100:421–437

    Article  PubMed  CAS  Google Scholar 

  48. Reiher M, Salomon O, Hess BA (2001) Theor Chem Acc 107:48–55

    CAS  Google Scholar 

  49. Siegbahn PEM, Himo F (2009) J Biol Inorg Chem 14:643–651

    Article  PubMed  CAS  Google Scholar 

  50. Neese F, Wennmohs F, Hansen A, Becker U (2009) Chem Phys 356:98–109

    Article  CAS  Google Scholar 

  51. Ahlrichs R et al (2001) ftp.chemie.uni-karlsruhe.de/pub/basen. Universität Karlsruhe, Karlsruhe

  52. Klamt A, Schuurmann G (1993) J Chem Soc Perkin Trans 2:799–805

    Google Scholar 

  53. Grimme S (2004) J Comput Chem 25:1463–1476

    Article  PubMed  CAS  Google Scholar 

  54. Grimme S (2006) J Comput Chem 27:1787–1799

    Article  PubMed  CAS  Google Scholar 

  55. Neese F (2006) J Am Chem Soc 128:10213–10222

    Article  PubMed  CAS  Google Scholar 

  56. Pipek J, Mezey PG (1989) J Chem Phys 90(9):4916–4926

    Article  CAS  Google Scholar 

  57. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) J Comput Chem 25(13):1605–1612

    Article  PubMed  CAS  Google Scholar 

  58. Tissandier MD, Cowen KA, Feng WY, Gundlach E, Cohen MH, Earhart AD, Coe JV (1998) J Phys Chem 102:7787–7794

    CAS  Google Scholar 

  59. Rydberg P, Sigfridsson E, Ryde U (2004) J Biol Chem 9:203–223

    CAS  Google Scholar 

  60. Goldfarb D, Bernardo M, Thomann H, Kroneck PMH, Ullrich V (1996) J Am Chem Soc 118:2686–2693

    Article  CAS  Google Scholar 

  61. Harvey J (2004) Struct Bond 112:151–183

    CAS  Google Scholar 

  62. Salomon O, Reiher M, Hess BA (2002) J Chem Phys 117:4729–4737

    Article  CAS  Google Scholar 

  63. Xantheas SS (2005) Struct Bond 116:119–148

    Article  CAS  Google Scholar 

  64. Dunitz JD (1994) Science 264:670

    Article  PubMed  CAS  Google Scholar 

  65. Martins G, Rodrigues L, Cunha FM, Matos D, Hildebrandt P, Murgida DH, Pereira IAC, Todorovic S (2010) J Phys Chem B 114:5563–5566

    Article  PubMed  CAS  Google Scholar 

  66. Yi J, Heinecke J, Tan H, Ford PC, Richter-Addo GB (2009) J Am Chem Soc 131:18119–18128

    Article  PubMed  CAS  Google Scholar 

  67. Nasri H, Ellison MK, Shang M, Schulz CE, Scheidt WR (2004) Inorg Chem 43:2932–2942

    Article  PubMed  CAS  Google Scholar 

  68. Nasri H, Ellison MK, Krebs C, Huynh BH, Scheidt WR (2000) J Am Chem Soc 122:10795–10804

    Article  CAS  Google Scholar 

  69. Wyllie GRA, Sheidt WR (2002) Chem Rev 102:1067–1089

    Article  PubMed  CAS  Google Scholar 

  70. Nasri H, Wang Y, Huynh BH, Walker FA, Scheidt WR (1991) Inorg Chem 30:1483–1489

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Neese.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bykov, D., Neese, F. Substrate binding and activation in the active site of cytochrome c nitrite reductase: a density functional study. J Biol Inorg Chem 16, 417–430 (2011). https://doi.org/10.1007/s00775-010-0739-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-010-0739-6

Keywords

Navigation