Skip to main content
Log in

A systematic investigation of multiheme c-type cytochromes in prokaryotes

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Multiheme c-type cytochromes (MHCs) are metalloproteins that can play various biochemical roles, including enzymatic activity and electron transfer. As electron transfer proteins, the presence of multiple heme cofactors in the vicinity allows electrons to rapidly travel relatively long distances. MHCs are often characterized by relatively low structural complexity, with the heme cofactors being largely responsible for maintaining the structure in place, owing to the protein–heme covalent linkages. In this work, we analyzed an extensive ensemble of 594 complete prokaryotic proteomes, amounting to more than 1.9 million sequences, to characterize their content in MHCs. We identified 1,659 MHCs in 258 organisms. The presence of MHCs was found to correlate quite well with the capability of an organism to synthesize or take up heme. For two organisms, the presence of MHCs in the proteome could be taken as a hint to the presence of divergent heme uptake pathways. The most common numbers of heme-binding motifs in a sequence were four (25%) and two (23%), followed by five (13%) and ten (9.8%). The average protein-to-heme ratio was relatively similar for all MHCs, except diheme proteins, regardless of the number of motifs at around 60 ± 30. The latter ratio could in favorable cases be a useful indicator for functional assignments of novel MHCs. Finally, we showed that the amount of structural information currently available for MHCs is limited with respect to the diversity of this broad class of metalloproteins. Experimental efforts in the structural investigation of MHCs are thus warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Scott RA, Mauk AG (1996) Cytochrome c. A multidisciplinary approach. University Science Books, Sausalito

    Google Scholar 

  2. Barker PD, Ferguson SJ (1999) Struct Fold Des 7:R281–R290

    Article  CAS  Google Scholar 

  3. Stevens JM, Daltrop O, Allen JW, Ferguson SJ (2004) Acc Chem Res 37:999–1007

    Article  CAS  PubMed  Google Scholar 

  4. Allen JW, Ginger ML, Ferguson SJ (2004) Biochem J 383:537–542

    Article  CAS  PubMed  Google Scholar 

  5. Einsle O, Messerschmidt A, Stach P, Bourenkov GP, Bartunik HD, Huber R, Kroneck PMH (1999) Nature 400:476–480

    Article  CAS  PubMed  Google Scholar 

  6. Czjzek M, Payan F, Guerlesquin F, Bruschi M, Haser R (1994) J Mol Biol 243:653–667

    Article  CAS  PubMed  Google Scholar 

  7. Morais J, Palma PN, Frazao C, Caldeira J, LeGall J, Moura I, Moura JJ, Carrondo MA (1995) Biochemistry 34:12830–12841

    Article  CAS  PubMed  Google Scholar 

  8. Aragao D, Frazao C, Sieker L, Sheldrick GM, LeGall J, Carrondo MA (2003) Acta Crystallogr D Biol Crystallogr 59:644–653

    Article  PubMed  Google Scholar 

  9. Czjzek M, ElAntak L, Zamboni V, Morelli X, Dolla A, Guerlesquin F, Bruschi M (2002) Structure 10:1677–1686

    Article  CAS  PubMed  Google Scholar 

  10. Matias PM, Coelho AV, Valente FM, Placido D, LeGall J, Xavier AV, Pereira IA, Carrondo MA (2002) J Biol Chem 277:47907–47916

    Article  CAS  PubMed  Google Scholar 

  11. Bertini I, Cavallaro G, Rosato A (2006) Chem Rev 106:90–115

    Article  CAS  PubMed  Google Scholar 

  12. Mowat CG, Chapman SK (2005) Dalton Trans 7:3381–3389

    Article  Google Scholar 

  13. Banci L, Bertini I, Rosato A, Varani G (1999) J Biol Inorg Chem 4:824–837

    Article  CAS  PubMed  Google Scholar 

  14. Cavallaro G, Decaria L, Rosato A (2008) J Proteome Res 11:4946–4954

    Article  Google Scholar 

  15. Moura JJ, Costa C, Liu MY, Moura I, LeGall J (1991) Biochim Biophys Acta 1058:61–66

    Article  CAS  PubMed  Google Scholar 

  16. Reedy CJ, Elvekrog MM, Gibney BR (2008) Nucleic Acids Res 36:D307–D313

    Article  CAS  PubMed  Google Scholar 

  17. Daltrop O, Ferguson SJ (2003) J Biol Chem 278:4404–4409

    Article  CAS  PubMed  Google Scholar 

  18. Pruitt KD, Tatusova T, Maglott DR (2007) Nucleic Acids Res 35:D61–D65

    Article  CAS  PubMed  Google Scholar 

  19. Eddy SR (1998) Bioinformatics 14:755–763

    Article  CAS  PubMed  Google Scholar 

  20. Finn RD, Tate J, Mistry J, Coggill PC, Sammut SJ, Hotz HR, Ceric G, Forslund K, Eddy SR, Sonnhammer EL, Bateman A (2008) Nucleic Acids Res 36:D281–D288

    Article  CAS  PubMed  Google Scholar 

  21. Gough J, Chothia C (2002) Nucleic Acids Res 30:268–272

    Article  CAS  PubMed  Google Scholar 

  22. Bamford VA, Bruno S, Rasmussen T, Appia-Ayme C, Cheesman MR, Berks BC, Hemmings AM (2002) EMBO J 21:5599–5610

    Article  CAS  PubMed  Google Scholar 

  23. Frickey T, Lupas A (2004) Bioinformatics 20:3702–3704

    Article  CAS  PubMed  Google Scholar 

  24. Heitmann D, Einsle O (2005) Biochemistry 44:12411–12419

    Article  CAS  PubMed  Google Scholar 

  25. Altschul SF, Madden TL, Schaeffer A, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  Google Scholar 

  26. Dolla A, Arnoux P, Protasevich I, Lobachov V, Brugna M, Giudici-Orticoni MT, Haser R, Czjzek M, Makarov A, Bruschi M (1999) Biochemistry 38:33–41

    Article  CAS  PubMed  Google Scholar 

  27. Hussain H, Grove J, Griffiths L, Busby S, Cole J (1994) Mol Microbiol 12:153–163

    Article  CAS  PubMed  Google Scholar 

  28. Gon S, Giudici-Orticoni MT, Mejean V, Iobbi-Nivol C (2001) J Biol Chem 276:11545–11551

    Article  CAS  PubMed  Google Scholar 

  29. Fredrickson JK, Romine MF, Beliaev AS, Auchtung JM, Driscoll ME, Gardner TS, Nealson KH, Osterman AL, Pinchuk G, Reed JL, Rodionov DA, Rodrigues JL, Saffarini DA, Serres MH, Spormann AM, Zhulin IB, Tiedje JM (2008) Nat Rev Microbiol 6:592–603

    Article  CAS  PubMed  Google Scholar 

  30. Bergmann DJ, Hooper AB, Klotz MG (2005) Appl Environ Microbiol 71:5371–5382

    Article  CAS  PubMed  Google Scholar 

  31. Einsle O, Stach P, Messerschmidt A, Simon J, Kroger A, Huber R, Kroneck PM (2000) J Biol Chem 275:39608–39616

    Article  CAS  PubMed  Google Scholar 

  32. Polyakov KM, Boyko KM, Tikhonova TV, Slutsky A, Antipov AN, Zvyagilskaya RA, Popov AN, Bourenkov GP, Lamzin VS, Popov VO (2009) J Mol Biol 389:846–862

    Article  CAS  PubMed  Google Scholar 

  33. Dias JM, Alves T, Bonifacio C, Pereira AS, Trincao J, Bourgeois D, Moura I, Romao MJ (2004) Structure 12:961–973

    Article  CAS  PubMed  Google Scholar 

  34. Shi L, Squier TC, Zachara JM, Fredrickson JK (2007) Mol Microbiol 65:12–20

    Article  CAS  PubMed  Google Scholar 

  35. Clarke TA, Dennison V, Seward HE, Burlat B, Cole JA, Hemmings AM, Richardson DJ (2004) J Biol Chem 279:41333–41339

    Article  CAS  PubMed  Google Scholar 

  36. Clarke TA, Cole JA, Richardson DJ, Hemmings AM (2007) Biochem J 406:19–30

    Article  CAS  PubMed  Google Scholar 

  37. Mowat CG, Rothery E, Miles CS, McIver L, Doherty MK, Drewette K, Taylor P, Walkinshaw MD, Chapman SK, Reid GA (2004) Nat Struct Mol Biol 11:1023–1024

    Article  CAS  PubMed  Google Scholar 

  38. Atkinson SJ, Mowat CG, Reid GA, Chapman SK (2007) FEBS Lett 581:3805–3808

    Article  CAS  PubMed  Google Scholar 

  39. Clarke TA, Holley T, Hartshorne RS, Fredrickson JK, Zachara JM, Shi L, Richardson DJ (2008) Biochem Soc Trans 36:1005–1010

    Article  CAS  PubMed  Google Scholar 

  40. Lee BC (1991) J Med Microbiol 34:317–322

    Article  CAS  PubMed  Google Scholar 

  41. Pacello F, Langford PR, Kroll JS, Indiani C, Smulevich G, Desideri A, Rotilio G, Battistoni A (2001) J Biol Chem 276:30326–30334

    Article  CAS  PubMed  Google Scholar 

  42. Tai SS, Lee CJ, Winter RE (1993) Infect Immun 61:5401–5405

    CAS  PubMed  Google Scholar 

  43. Brige A, Leys D, Meyer TE, Cusanovich MA, Van Beeumen JJ (2002) Biochemistry 41:4827–4836

    Article  CAS  PubMed  Google Scholar 

  44. Igarashi N, Moriyama H, Fujiwara T, Fukumori Y, Tanaka N (1997) Nat Struct Biol 4:276–284

    Article  CAS  PubMed  Google Scholar 

  45. Gibson HR, Mowat CG, Miles CS, Li BR, Leys D, Reid GA, Chapman SK (2006) Biochemistry 45:6363–6371

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

S.S. thanks Fiorgen Foundation for financial support. Support by the Italian Ministry for University and Research is also gratefully acknowledged (FIRB project no. RBRN07BMCT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Rosato.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 385 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, S., Cavallaro, G. & Rosato, A. A systematic investigation of multiheme c-type cytochromes in prokaryotes. J Biol Inorg Chem 15, 559–571 (2010). https://doi.org/10.1007/s00775-010-0623-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-010-0623-4

Keywords

Navigation