Skip to main content

Advertisement

Log in

Can uranium follow the iron-acquisition pathway? Interaction of uranyl-loaded transferrin with receptor 1

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Transferrin receptor 1 (RD) binds iron-loaded transferrin and allows its internalization in the cytoplasm. Human serum transferrin also forms complexes with metals other than iron, including uranium in the uranyl form (UO2 2+). Can the uranyl-saturated transferrin (TUr2) follow the receptor-mediated iron-acquisition pathway? In cell-free assays, TUr2 interacts with RD in two different steps. The first is fast, direct rate constant, k 1 = (5.2 ± 0.8) × 106 M−1 s−1; reverse rate constant, k −1 = 95 ± 5 s−1; and dissociation constant K 1 = 18 ± 6 μM. The second occurs in the 100-s range and leads to an increase in the stability of the protein–protein adduct, with an average overall dissociation constant K d = 6 ± 2 μM. This kinetic analysis implies in the proposed in vitro model possible but weak competition between TUr2 and the C-lobe of iron-loaded transferrin toward the interaction with R D.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Aisen P (2004) Int J Biochem Cell Biol 36:2137–2143

    Article  CAS  PubMed  Google Scholar 

  2. Crichton R (2001) Inorganic biochemistry of iron metabolism. Wiley, New York

    Book  Google Scholar 

  3. Dautry-Varsat A, Ciechanover A, Lodish HF (1983) Proc Natl Acad Sci USA 80:2258–2262

    Article  CAS  PubMed  Google Scholar 

  4. Zuccola HJ (1992) The crystal structure of monoferric human serum transferrin. PhD thesis, Georgia Institute of Technology

  5. Moore SA, Anderson BF, Groom CR, Haridas M, Baker EN (1997) J Mol Biol 274:222–236

    Article  CAS  PubMed  Google Scholar 

  6. Bou Abdallah F, El Hage Chahine JM (1998) Eur J Biochem 258:1022–1031

    Article  CAS  PubMed  Google Scholar 

  7. Anderson BF, Baker HM, Norris GE, Rumball SV, Baker EN (1990) Nature 344:784–787

    Article  CAS  PubMed  Google Scholar 

  8. Lawrence CM, Ray S, Babyonyshev M, Galluser R, Borhani DW, Harrison SC (1999) Science 286:779–782

    Article  CAS  PubMed  Google Scholar 

  9. Cheng Y, Zak O, Aisen P, Harrison SC, Walz T (2004) Cell 116:565–576

    Article  CAS  PubMed  Google Scholar 

  10. Hemadi M, Kahn PH, Miquel G, El Hage Chahine JM (2004) Biochemistry 43:1736–1745

    Article  CAS  PubMed  Google Scholar 

  11. Harris WR (1989) Adv Exp Med Biol 249:67–93

    CAS  PubMed  Google Scholar 

  12. Tinoco AD, Eames EV, Valentine AM (2008) J Am Chem Soc 130:2262–2270

    Article  CAS  PubMed  Google Scholar 

  13. Sun H, Li H, Sadler PJ (1999) Chem Rev 99:2817–2842

    Article  CAS  PubMed  Google Scholar 

  14. Sun H, Li H, Mason AB, Woodworth RC, Sadler PJ (1999) Biochem J 337(1):105–111

    Article  CAS  PubMed  Google Scholar 

  15. Ha-Duong NT, Hemadi M, Chikh Z, El Hage Chahine JM (2008) Biochem Soc Trans 36:1422–1426

    Article  CAS  PubMed  Google Scholar 

  16. Hemadi M, Miquel G, Kahn PH, El Hage Chahine JM (2003) Biochemistry 42:3120–3130

    Article  CAS  PubMed  Google Scholar 

  17. Lestaevel P, Bussy C, Paquet F, Dhieux B, Clarencon D, Houpert P, Gourmelon P (2005) Neurotoxicol Teratol 27:835–840

    Article  CAS  PubMed  Google Scholar 

  18. Wise SS, Thompson WD, Aboueissa AM, Mason MD, Wise JP (2007) Chem Res Toxicol 20:815–820

    Article  CAS  PubMed  Google Scholar 

  19. Gorden AE, Xu J, Raymond KN, Durbin P (2003) Chem Rev 103:4207–4282

    Article  CAS  PubMed  Google Scholar 

  20. Hada M, Georgakilas AG (2008) J Radiat Res (Tokyo) 49:203–210

    Article  CAS  Google Scholar 

  21. Knobel Y, Glei M, Weise A, Osswald K, Schaferhenrich A, Richter KK, Claussen U, Pool-Zobel BL (2006) Toxicol Sci 93:286–297

    Article  PubMed  Google Scholar 

  22. The Royal Society (2002) The health effects of depleted uranium munitions. Royal Society document 6/02. The Royal Society, London

  23. Leggett RW (1989) Health Phys 57:83–90

    Google Scholar 

  24. Lestaevel P, Houpert P, Bussy C, Dhieux B, Gourmelon P, Paquet F (2005) Toxicology 212:219–226

    Article  CAS  PubMed  Google Scholar 

  25. Basset C, Dedieu A, Guerin P, Quemeneur E, Meyer D, Vidaud C (2008) J Chromatogr A 1185:233–240

    Article  CAS  PubMed  Google Scholar 

  26. Vidaud C, Dedieu A, Basset C, Plantevin S, Dany I, Pible O, Quemeneur E (2005) Chem Res Toxicol 18:946–953

    Article  CAS  PubMed  Google Scholar 

  27. Scapolan S, Ansoborlo E, Moulin C, Madic C (1998) Radiat Prot Dosim 79:505–508

    CAS  Google Scholar 

  28. Montavon G, Apostolidis C, Bruchertseifer F, Repink U, Morgenstern A (2009) J Inorg Biochem. doi:10.1016/j.jinorgbio.2009.08.010

  29. Benavides-Garcia MG, Balasubramanian K (2009) Chem Res Toxicol 22:1613–1621

    Article  CAS  PubMed  Google Scholar 

  30. Vidaud C, Gourion-Arsiquaud S, Rollin-Genetet F, Torne-Celer C, Plantevin S, Pible O, Berthomieu C, Quemeneur E (2007) Biochemistry 46:2215–2226

    Article  CAS  PubMed  Google Scholar 

  31. Bernasconi CF (1976) Relaxation kinetics. Academic Press, London

    Google Scholar 

  32. Eigen M, DeMaeyer L (1963) In: Friess SL, Lewis ES, Weissberger A (eds) Techniques of organic chemistry—investigation of rates and mechanism of reactions, part II, vol 8. Wiley, New York, pp 895–1029

  33. Hemadi M, Ha-Duong NT, El Hage Chahine JM (2006) J Mol Biol 358:1125–1136

    Article  CAS  PubMed  Google Scholar 

  34. Pakdaman R, Abdallah FB, El Hage Chahine JM (1999) J Mol Biol 293:1273–1284

    Article  CAS  PubMed  Google Scholar 

  35. Makey DG, Seal US (1976) Biochim Biophys Acta 453:250–256

    CAS  PubMed  Google Scholar 

  36. El Hage Chahine JM, Fain D (1993) J Chem Soc Dalton Trans 3137–3143

  37. Turkewitz AP, Amatruda JF, Borhani D, Harrison SC, Schwartz AL (1988) J Biol Chem 263:8318–8325

    CAS  PubMed  Google Scholar 

  38. Miquel G, Nekaa T, Kahn PH, Hemadi M, El Hage Chahine JM (2004) Biochemistry 43:14722–14731

    Article  CAS  PubMed  Google Scholar 

  39. Chikh Z, Ha-Duong NT, Miquel G, El Hage Chahine JM (2007) J Biol Inorg Chem 12:90–100

    Article  CAS  PubMed  Google Scholar 

  40. Chikh Z, Hemadi M, Miquel G, Ha-Duong NT, El Hage Chahine JM (2008) J Mol Biol 380:900–916

    Article  CAS  PubMed  Google Scholar 

  41. Fuchs H, Gessner R, Tauber R, Ghosh R (1995) Biochemistry 34:6196–6207

    Article  CAS  PubMed  Google Scholar 

  42. Wally J, Halbrooks PJ, Vonrhein C, Rould MA, Everse SJ, Mason AB, Buchanan SK (2006) J Biol Chem 281:24934–24944

    Article  CAS  PubMed  Google Scholar 

  43. Sun H, Li H, Mason AB, Woodworth RC, Sadler PJ (2001) J Biol Chem 276:8829–8835

    Article  CAS  PubMed  Google Scholar 

  44. Sheff D, Pelletier L, O’Connell CB, Warren G, Mellman I (2002) J Cell Biol 156:797–804

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Michel El Hage Chahine.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hémadi, M., Ha-Duong, NT., Plantevin, S. et al. Can uranium follow the iron-acquisition pathway? Interaction of uranyl-loaded transferrin with receptor 1. J Biol Inorg Chem 15, 497–504 (2010). https://doi.org/10.1007/s00775-009-0618-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-009-0618-1

Keywords

Navigation