Skip to main content
Log in

Dioxygen and nitric oxide pathways and affinity to the catalytic site of rubredoxin:oxygen oxidoreductase from Desulfovibrio gigas

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Rubredoxin:oxygen oxidoreductase (ROO) is the terminal oxidase of a soluble electron transfer chain found in Desulfovibrio gigas. This protein belongs to the flavodiiron family and was initially described as an oxygen reductase, converting this substrate to water and acting as an oxygen-detoxifying system. However, more recent studies evidenced also the ability for this protein to act as a nitric oxide reductase, suggesting an alternative physiological role. To clarify the apparent bifunctional nature of this protein, we performed molecular dynamics simulations of the protein, in different redox states, together with O2 and NO molecules in aqueous solution. The two small molecules were parameterized using free-energy calculations of the hydration process. With these simulations we were able to identify specific protein paths that allow the diffusion of both these molecules through the protein towards the catalytic centers. Also, we have tried to characterize the preference of ROO towards the presence of O2 and/or NO at the active site. By using free-energy simulations, we did not find any significant preference for ROO to accommodate both O2 and NO. Also, from our molecular dynamics simulations we were able to identify similar diffusion profiles for both O2 and NO molecules. These two conclusions are in good agreement with previous experimental works stating that ROO is able to catalyze both O2 and NO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Andersson JO, Sjogren AM, Davis LA, Embley TM, Roger AJ (2003) Curr Biol 13:94–104

    Article  PubMed  CAS  Google Scholar 

  2. Vicente JB, Carrondo MA, Teixeira M, Frazão C (2007) In: Messerschmidt A (ed) Handbook of metalloproteins. Wiley, New York, pp 1–19

  3. Vicente JB, Carrondo MA, Teixeira M, Frazao C (2008) Methods Enzymol 437:3–19

    Article  PubMed  CAS  Google Scholar 

  4. Chen L, Liu MY, LeGall J, Fareleira P, Santos H, Xavier AV (1993) Biochem Biophys Res Commun 193:100–105

    Article  PubMed  CAS  Google Scholar 

  5. Frazão C, Silva G, Gomes CM, Matias P, Coelho R, Sieker L, Macedo S, Liu MY, Oliveira S, Teixeira M, Xavier AV, Rodrigues-Pousada C, Carrondo MA, LeGall J (2000) Nat Struct Biol 7:1041–1045

    Article  PubMed  Google Scholar 

  6. Dilling W, Cypionka H (1990) FEMS Microbiol Lett 71:123–128

    CAS  Google Scholar 

  7. Santos H, Fareleira P, Xavier A, Chen L, Liu MY, LeGall J (1993) Biochem Biophy Res Commun 195:551–557

    Article  CAS  Google Scholar 

  8. Gardner A, Helmick R, Gardner P (2002) J Biol Chem 277:8172–8177

    Google Scholar 

  9. Gomes CM, Giuffrè A, Forte H, Vicente JB, Saraiva L, Brunori M, Teixeira M (2002) J Biol Chem 277:25273–25276

    Google Scholar 

  10. Gomes CM, Vicente JB, Wasserfallen A, Teixeira M (2000) Biochemistry 39:16230–16237

    Article  PubMed  CAS  Google Scholar 

  11. Rodrigues R, Vicente JB, Felix R, Oliveira S, Teixeira M, Rodrigues-Pousada C (2006) J Bacteriol 188:2745–2751

    Article  PubMed  CAS  Google Scholar 

  12. Silaghi-Dumitrescu R, Ng KY, Viswanathan R, Kurtz DM Jr (2005) Biochemistry 44:3572–3579

    Article  PubMed  CAS  Google Scholar 

  13. Chen L, Liu MY, LeGall J, Fareleira P, Santos H, Xavier AV (1993) Eur J Biochem 216:443–448

    Article  PubMed  CAS  Google Scholar 

  14. Gomes CM, Silva G, Oliveira S, LeGall J, Liu MY, Xavier AV, Rodrigues-Pousada C, Teixeira M (1997) J Biol Chem 272:22502–22508

    Article  PubMed  CAS  Google Scholar 

  15. Victor BL, Vicente JB, Rodrigues R, Oliveira S, Rodrigues-Pousada C, Frazão C, Gomes CM, Teixeira M, Soares CM (2003) J Biol Inorg Chem 8:475–488

    PubMed  CAS  Google Scholar 

  16. Saraiva LM, Vicente JB, Teixeira M (2004) Adv Microb Physiol 49:77–129

    Google Scholar 

  17. DeLano WL (2003) PyMOL. DeLano Scientific, San Carlos

  18. Cohen J, Kim K, King P, Seibert M, Schulten K (2005) Structure 13:1321–1329

    Article  PubMed  CAS  Google Scholar 

  19. Cohen J, Kim K, Posewitz M, Ghirardi ML, Schulten K, Seibert M, King P (2005) Biochem Soc Trans 33:80–82

    Article  PubMed  CAS  Google Scholar 

  20. Montet Y, Amara P, Volbeda A, Vernede X, Hatchikian EC, Field MJ, Frey M, Fontecilla-Camps JC (1997) Nat Struct Biol 4:523–526

    Article  PubMed  CAS  Google Scholar 

  21. Teixeira VH, Baptista AM, Soares CM (2006) Biophys J 91:2035–2045

    Article  PubMed  CAS  Google Scholar 

  22. Lancaster JR (1994) Proc Natl Acad Sci USA 91:8137–8141

    Google Scholar 

  23. Elber R, Karplus M (1990) J Am Chem Soc 112:9161–9175

    Article  CAS  Google Scholar 

  24. Hofacker I, Schulten K (1998) Proteins Struct Funct Genet 30:100–107

    Article  PubMed  CAS  Google Scholar 

  25. Wilhelm E, Battino R, Wilcock RJ (1977) Chem Rev 77:219–262

    Article  CAS  Google Scholar 

  26. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA Jr, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cuik Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Head-Gordon M, Replogle ES, Pople JA (1998) Gaussian 98. Gaussian, Pittsburgh

  27. Bayly CI, Cieplak P, Cornell WD, Kollman PA (1993) J Phys Chem 97:10269–10280

    Article  CAS  Google Scholar 

  28. Cohen J, Arkhipov A, Braun R, Schulten K (2006) Biophys J 91:1844–1857

    Article  PubMed  CAS  Google Scholar 

  29. Dhib M, Bouanich JP, Aroui H, Picard-Bersellini A (2001) J Quant Spectrosc Radiat Transf 68:163–178

    Article  CAS  Google Scholar 

  30. Eslami H, Mozaffari F, Boushehri A (2001) Int J Therm Sci 40:999–1010

    Article  CAS  Google Scholar 

  31. Lin ST, Hsu HW (1969) J Chem Eng Data 14:328–332

    Google Scholar 

  32. Pawlikowski EM, Prausnitz JM (1983) Ind Eng Chem Fund 22:86–90

    Article  CAS  Google Scholar 

  33. Tan ZQ, Gao GH, Yu YX, Gu C (2001) Fluid Phase Equilib 180:375–382

    Article  CAS  Google Scholar 

  34. Tiepel EW, Gubbins KE (1973) Ind Eng Chem Fund 12:18–25

    Article  CAS  Google Scholar 

  35. Berendsen HJC, Vanderspoel D, Vandrunen R (1995) Comput Phys Commun 91:43–56

    Article  CAS  Google Scholar 

  36. Scott WR, Hunenberger PH, Tironi IG, Marck AE, Billeter SR, Fennen J, Torda AE, Huber T, Kruger P, van Gunsteren WF (1999) J Phys Chem A 103:3596–3607

    Article  CAS  Google Scholar 

  37. van Gunsteren WF, Berendsen HJC (1990) Angew Chem Int Ed Engl 29:992–1023

    Article  Google Scholar 

  38. Hermans J, Berendsen HJC, Vangunsteren WF, Postma JPM (1984) Biopolymers 23:1513–1518

    Article  CAS  Google Scholar 

  39. Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) J Comput Chem 18:1463–1472

    Article  CAS  Google Scholar 

  40. Miyamoto S, Kollman PA (1992) J Comput Chem 13:952–962

    Article  CAS  Google Scholar 

  41. Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) J Chem Phys 81:3684–3690

    Article  CAS  Google Scholar 

  42. Shirts MR, Pitera JW, Swope WC, Pande VS (2003) J Chem Phys 119:5740–5761

    Article  CAS  Google Scholar 

  43. Ben-Naim A (1978) J Phys Chem 82:792–803

    Article  CAS  Google Scholar 

  44. Ben-Naim A (1992) Statistical thermodynamics for chemists and biochemists. Plenum Press, New York

    Google Scholar 

  45. Bashford D, Gerwert K (1992) J Mol Biol 224:473–486

    Article  PubMed  CAS  Google Scholar 

  46. Baptista AB, Soares CM (2001) J Phys Chem B 105:293–309

    Article  CAS  Google Scholar 

  47. Teixeira VH, Cunha CA, Machuqueiro M, Oliveira AS, Victor BL, Soares CM, Baptista AM (2005) J Phys Chem B Condens Matter Mater Surf Interfaces Biophys 109:14691–14706

    PubMed  CAS  Google Scholar 

  48. Lindahl E, Hess B, van der Spoel D (2001) J Mol Model 7:306–317

    CAS  Google Scholar 

  49. Beveridge DL, Dicapua FM (1989) Annu Rev Biophys Biophys Chem 18:431–492

    Article  PubMed  CAS  Google Scholar 

  50. Victor BL, Baptista AM, Soares CM (2004) Biophys J 87:4316–4325

    Article  PubMed  CAS  Google Scholar 

  51. Silaghi-Dumitrescu R, Kurtz DM, Ljungdahl LG, Lanzilotta WN (2005) Biochemistry 44:6492–6501

    Article  PubMed  CAS  Google Scholar 

  52. Seedorf H, Hagemeier CH, Shima S, Thauer RK, Warkentin E, Ermler U (2007) FEBS J 274:1588–1599

    Article  PubMed  CAS  Google Scholar 

  53. Di Matteo A, Scandurra FM, Testa F, Forte E, Sarti P, Brunori M, Giuffre A (2008) J Biol Chem 283:4061–4068

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank João Vicente and Miguel Teixeira for fruitful discussions about FDPs. This work was supported by grants 36560/1999/FCT-Sapiens and by fellowship SFRH/BD/10622/2002 from Fundação para a Ciência ea Tecnologia, Portugal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cláudio M. Soares.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 352 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Victor, B.L., Baptista, A.M. & Soares, C.M. Dioxygen and nitric oxide pathways and affinity to the catalytic site of rubredoxin:oxygen oxidoreductase from Desulfovibrio gigas . J Biol Inorg Chem 14, 853–862 (2009). https://doi.org/10.1007/s00775-009-0497-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-009-0497-5

Keywords

Navigation