Skip to main content
Log in

Human serum transferrin: a tale of two lobes. Urea gel and steady state fluorescence analysis of recombinant transferrins as a function of pH, time, and the soluble portion of the transferrin receptor

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Iron release from human serum transferrin (hTF) has been studied extensively; however, the molecular details of the mechanism(s) remain incomplete. This is in part due to the complexity of this process, which is influenced by lobe–lobe interactions, the transferrin receptor (TFR), the salt effect, the presence of a chelator, and acidification within the endosome, resulting in iron release. The present work brings together many of the concepts and assertions derived from previous studies in a methodical, uniform, and visual manner. Examination of earlier work reveals some uncertainty due to sample and technical limitations. We have used a combination of steady-state fluorescence and urea gels to evaluate the effect of conformation, pH, time, and the soluble portion of the TFR (sTFR) on iron release from each lobe of hTF. The use of authentic recombinant monoferric and locked species removes any possibility of cross-contamination by acquisition of iron. Elimination of detergent by use of the sTFR provides a further technical advantage. We find that iron release from the N-lobe is very sensitive to the conformation of the C-lobe, but is insensitive to the presence of the sTFR or to changes in pH (between 5.6 and 6.4). Specifically, when the cleft of the C-lobe is locked, the urea gels indicate that only about half of the iron is completely removed from the cleft of the N-lobe. Iron release from the C-lobe is most affected by the presence of the sTFR and changes in pH, but is unaffected by the conformation of the N-lobe. A model for iron release from diferric hTF is provided to delineate our findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

BHK:

Baby hamster kidney cells

DMEM-F12:

Dulbecco’s modified Eagle’s medium containing Ham F-12 nutrient mixture

FeC hTF:

Nonglycosylated recombinant monoferric C-lobe human serum transferrin (mutations Y95F and Y188F preclude binding in the N-lobe) that contains an N-terminal His6 tag

Fe2 hTF:

Nonglycosylated recombinant diferric human serum transferrin that contains an N-terminal His6 tag

FeN hTF:

Nonglycosylated recombinant monoferric N-lobe human serum transferrin (mutations Y426F and Y517F preclude binding in the C-lobe) that contains an N-terminal His6 tag

hTF:

Human serum transferrin

LockC hTF:

Nonglycosylated recombinant diferric hTF that contains an N-terminal His6 tag and where mutation R632A locks iron in the C-lobe

LockN hTF:

Nonglycosylated recombinant diferric hTF that contains an N-terminal His6 tag and where mutation K206E locks iron in the N-lobe

MES:

2-Morpholinoethanesulfonic acid

sTFR:

Soluble portion of the transferrin receptor (residues 121–760) expressed as a recombinant entity that contains an N-terminal His6 tag

TBE:

Tris(hydroxymethyl)aminomethane–borate–EDTA

TFR:

Human serum transferrin receptor

Tris:

Tris(hydroxymethyl)aminomethane

References

  1. Halbrooks PJ, He QY, Briggs SK, Everse SJ, Smith VC, MacGillivray RT, Mason AB (2003) Biochemistry 42:3701–3707

    Article  PubMed  CAS  Google Scholar 

  2. Williams J, Moreton K (1980) Biochem J 185:483–488

    PubMed  CAS  Google Scholar 

  3. Huebers H, Josephson B, Huebers E, Csiba E, Finch C (1981) Proc Natl Acad Sci USA 78:2572–2576

    Article  PubMed  CAS  Google Scholar 

  4. Mason AB, Halbrooks PJ, James NG, Connolly SA, Larouche JR, Smith VC, MacGillivray RT, Chasteen ND (2005) Biochemistry 44:8013–8021

    Article  PubMed  CAS  Google Scholar 

  5. He QY, Mason AB (2002) In: Templeton DM (ed) Molecular and cellular iron transport. Dekker, Toronto

    Google Scholar 

  6. Dautry-Varsat A, Ciechanover A, Lodish HF (1983) Proc Natl Acad Sci USA 80:2258–2262

    Article  PubMed  CAS  Google Scholar 

  7. Bali PK, Harris WR (1989) J Am Chem Soc 111:4457–4461

    Article  CAS  Google Scholar 

  8. Chasteen ND, Grady JK, Woodworth RC, Mason AB (1994) Adv Exp Med Biol 357:45–52

    PubMed  CAS  Google Scholar 

  9. Hamilton DH, Turcot I, Stintzi A, Raymond KN (2004) J Biol Inorg Chem 9:936–944

    Article  PubMed  CAS  Google Scholar 

  10. Dewan JC, Mikami B, Hirose M, Sacchettini JC (1993) Biochemistry 32:11963–11968

    Article  PubMed  CAS  Google Scholar 

  11. He QY, Mason AB, Tam BM, MacGillivray RT, Woodworth RC (1999) Biochemistry 38:9704–9711

    Article  PubMed  CAS  Google Scholar 

  12. Halbrooks PJ, Giannetti AM, Klein JS, Bjorkman PJ, Larouche JR, Smith VC, MacGillivray RT, Everse SJ, Mason AB (2005) Biochemistry 44:15451–15460

    Article  PubMed  CAS  Google Scholar 

  13. Hall DR, Hadden JM, Leonard GA, Bailey S, Neu M, Winn M, Lindley PF (2002) Acta Crystallogr D Biol Crystallogr 58:70–80

    Article  PubMed  CAS  Google Scholar 

  14. Wally J, Halbrooks PJ, Vonrhein C, Rould MA, Everse SJ, Mason AB, Buchanan SK (2006) J Biol Chem 281:24934–24944

    Article  PubMed  CAS  Google Scholar 

  15. Egan TJ, Zak O, Aisen P (1993) Biochemistry 32:8162–8167

    Article  PubMed  CAS  Google Scholar 

  16. Lehrer SS (1969) J Biol Chem 244:3613–3617

    PubMed  CAS  Google Scholar 

  17. Ross JA, Jameson DM (2008) Photochem Photobiol Sci 7:1301–1312

    Article  PubMed  CAS  Google Scholar 

  18. James NG, Berger CL, Byrne SL, Smith VC, Macgillivray RT, Mason AB (2007) Biochemistry 46:10603–10611

    Article  PubMed  CAS  Google Scholar 

  19. James NG, Byrne SL, Steere AN, Smith VC, MacGillivray RTA, Mason AB (2009) Biochemistry (in press)

  20. Makey DG, Seal US (1976) Biochim Biophys Acta 453:250–256

    PubMed  CAS  Google Scholar 

  21. Aisen P, Leibman A, Zweier J (1978) J Biol Chem 253:1930–1937

    PubMed  CAS  Google Scholar 

  22. Evans RW, Williams J (1978) Biochem J 173:543–552

    PubMed  CAS  Google Scholar 

  23. Leibman A, Aisen P (1979) Blood 53:1058–1065

    PubMed  CAS  Google Scholar 

  24. Chasteen ND, Williams J (1981) Biochem J 193:717–727

    PubMed  CAS  Google Scholar 

  25. Williams J, Chasteen ND, Moreton K (1982) Biochem J 201:527–532

    PubMed  CAS  Google Scholar 

  26. Bali PK, Aisen P (1991) Biochemistry 30:9947–9952

    Article  PubMed  CAS  Google Scholar 

  27. Mason AB, Miller MK, Funk WD, Banfield DK, Savage KJ, Oliver RW, Green BN, MacGillivray RT, Woodworth RC (1993) Biochemistry 32:5472–5479

    Article  PubMed  CAS  Google Scholar 

  28. Turkewitz AP, Amatruda JF, Borhani D, Harrison SC, Schwartz AL (1988) J Biol Chem 263:8318–8325

    PubMed  CAS  Google Scholar 

  29. Bali PK, Zak O, Aisen P (1991) Biochemistry 30:324–328

    Article  PubMed  CAS  Google Scholar 

  30. Mason AB, Halbrooks PJ, Larouche JR, Briggs SK, Moffett ML, Ramsey JE, Connolly SA, Smith VC, MacGillivray RT (2004) Protein Expr Purif 36:318–326

    Article  PubMed  CAS  Google Scholar 

  31. Byrne SL, Leverence R, Klein JS, Giannetti AM, Smith VC, MacGillivray RT, Kaltashov IA, Mason AB (2006) Biochemistry 45:6663–6673

    Article  PubMed  CAS  Google Scholar 

  32. Mason AB, He QY, Adams TE, Gumerov DR, Kaltashov IA, Nguyen V, MacGillivray RT (2001) Protein Expr Purif 23:142–150

    Article  PubMed  CAS  Google Scholar 

  33. James NG, Mason AB (2008) Anal Biochem 378:202–207

    Article  PubMed  CAS  Google Scholar 

  34. Bali PK, Aisen P (1992) Biochemistry 31:3963–3967

    Article  PubMed  CAS  Google Scholar 

  35. El Hage Chahine JM, Pakdaman R (1995) Eur J Biochem 230:1102–1110

    Article  PubMed  CAS  Google Scholar 

  36. Hemadi M, Ha-Duong NT, El Hage Chahine JM (2006) J Mol Biol 358:1125–1136

    Article  PubMed  CAS  Google Scholar 

  37. Grossmann JG, Crawley JB, Strange RW, Patel KJ, Murphy LM, Neu M, Evans RW, Hasnain SS (1998) J Mol Biol 279:461–472

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by USPHS Grant R01 (DK 21739) to A.B.M.. Support for S.L.B. came from Hemostasis and Thrombosis Training Grant (5T32HL007594), issued to K. G. Mann at the University of Vermont by the National Heart, Lung, and Blood Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne B. Mason.

Electronic supplementary material

Below is the link to the electronic supplementary material.

775_2009_491_MOESM1_ESM.pdf

Maximum fluorescence emission from Fe2 hTF, FeN hTF, FeC hTF, LockC hTF and LockN hTF at pH 7.4 (100 mM HEPES) and pH 6.4–5.6 (100 mM MES, 300 mM KCl, 4 mM EDTA). All samples were incubated at least 15 minutes to try to assure complete iron removal. Samples were excited at 280 nm and emission was monitored between 300–400 nm using a 320 nm cut-on filter. (PDF 281 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Byrne, S.L., Mason, A.B. Human serum transferrin: a tale of two lobes. Urea gel and steady state fluorescence analysis of recombinant transferrins as a function of pH, time, and the soluble portion of the transferrin receptor. J Biol Inorg Chem 14, 771–781 (2009). https://doi.org/10.1007/s00775-009-0491-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-009-0491-y

Keywords

Navigation