Skip to main content
Log in

Linking conformation change to hemoglobin activation via chain-selective time-resolved resonance Raman spectroscopy of protoheme/mesoheme hybrids

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Time-resolved resonance Raman (RR) spectra are reported for hemoglobin (Hb) tetramers, in which the α and β chains are selectively substituted with mesoheme. The Soret absorption band shift in mesoheme relative to protoheme permits chain-selective recording of heme RR spectra. The evolution of these spectra following HbCO photolysis shows that the geminate recombination rates and the yields are the same for the two chains, consistent with recent results on 15N-heme isotopomer hybrids. The spectra also reveal systematic shifts in the deoxyheme ν 4 and ν Fe–His RR bands, which are anticorrelated. These shifts are resolved for the successive intermediates in the protein structure, which have previously been determined from time-resolved UV RR spectra. Both chains show Fe–His bond compression in the immediate photoproduct, which relaxes during the formation of the first intermediate, Rdeoxy (0.07 μs), in which the proximal F-helix is proposed to move away from the heme. Subsequently, the Fe–His bond weakens, more so for the α chains than for the β chains. The weakening is gradual for the β chains, but is abrupt for the α chains, coinciding with completion of the R–T quaternary transition, at 20 μs. Since the transition from fast- to slow-rebinding Hb also occurs at 20 μs, the drop in the α chain ν Fe–His supports the localization of ligation restraint to tension in the Fe–His bond, at least in the α chains. The mechanism is more complex in the β chains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Perutz MF (1970) Nature 228:726–734

    Article  PubMed  CAS  Google Scholar 

  2. Baldwin J, Chothia C (1979) J Mol Biol 129:175–220

    Article  PubMed  CAS  Google Scholar 

  3. Monod J, Wyman J, Changeux JP (1965) J Mol Biol 12:88–118

    Article  PubMed  CAS  Google Scholar 

  4. Perutz MF (1990) Mechanisms of cooperativity and allosteric regulation in proteins. Cambridge University Press, Cambridge

    Google Scholar 

  5. Friedman JM, Scott TW, Stepnoski RA, Ikedasaito M, Yonetani T (1983) J Biol Chem 258:564–572

    Google Scholar 

  6. Kaminaka S, Ogura T, Kitagishi K, Yonetani T, Kitagawa T (1989) J Am Chem Soc 111:3787–3794

    Article  CAS  Google Scholar 

  7. Kitagawa T, Nagai K, Tsubaki M (1979) FEBS Lett 104:376–378

    Article  PubMed  CAS  Google Scholar 

  8. Nagai K, Kitagawa T (1980) Proc Natl Acad Sci USA Biol Sci 77:2033–2037

    Article  CAS  Google Scholar 

  9. Ondrias MR, Rousseau DL, Kitagawa T, Ikedasaito M, Inubushi T, Yonetani T (1982) J Biol Chem 257:8766–8770

    PubMed  CAS  Google Scholar 

  10. Ondrias MR, Rousseau DL, Shelnutt JA, Simon SR (1982) Biochemistry 21:3428–3437

    Article  PubMed  CAS  Google Scholar 

  11. Friedman JM, Rousseau DL, Ondrias MR (1982) Annu Rev Phys Chem 33:471–491

    Article  CAS  Google Scholar 

  12. Friedman JM, Rousseau DL, Ondrias MR, Stepnoski RA (1982) Science 218:1244–1246

    Article  PubMed  CAS  Google Scholar 

  13. Jayaraman V, Rodgers KR, Mukerji I, Spiro TG (1995) Science 269:1843–1848

    Article  PubMed  CAS  Google Scholar 

  14. Jayaraman V, Spiro TG (1996) Biospectroscopy 2:311–316

    Article  CAS  Google Scholar 

  15. Scott TW, Friedman JM (1984) J Am Chem Soc 106:5677–5687

    Article  CAS  Google Scholar 

  16. Jeyarajah S, Kincaid JR (1990) Biochemistry 29:5087–5094

    Article  PubMed  CAS  Google Scholar 

  17. Podstawka E, Proniewicz LM (2004) J Inorg Biochem 98:1502–1512

    Article  PubMed  CAS  Google Scholar 

  18. Balakrishnan G, Case MA, Pevsner A, Zhao XJ, Tengroth C, McLendon GL, Spiro TG (2004) J Mol Biol 340:843–856

    Article  PubMed  CAS  Google Scholar 

  19. Rodgers KR, Su C, Subramaniam S, Spiro TG (1992) J Am Chem Soc 114:3697–3709

    Article  CAS  Google Scholar 

  20. Antonini E, Brunori M (1971) Hemoglobin and myoglobin and their reactions with ligands. Elsevier, New York

    Google Scholar 

  21. Riggs A, Antonini E, Rossi-Bernardi L, Chiancone E (1981) Methods enzymol. Academic Press, Dublin, pp 5–29

  22. Ascoli F, Rossi Fanelli MR, Antonini E, Rossi-Bernardi L, Chiancone E (1981) Methods enzymol. Academic Press, Dublin, pp 72–87

  23. Yip YK, Waks M, Beychok S (1972) J Biol Chem 247:7237–7244

    PubMed  CAS  Google Scholar 

  24. Bucci E, Antonini E, Rossi-Bernardi L, Chiancone E (1981) Methods enzymol. Academic Press, Dublin, pp 97–106

  25. Geraci G, Parkhurs Lj, Gibson QH (1969) J Biol Chem 244:4664–4667

    PubMed  CAS  Google Scholar 

  26. Yip YK, Waks M, Beychok S (1977) Proc Natl Acad Sci USA 74:64–68

    Article  PubMed  CAS  Google Scholar 

  27. Ikeda-Saito M, Inubushi T, Yonetani T, Antonini E, Rossi-Bernardi L, Chiancone E (1981) Methods enzymol. Academic Press, Dublin, pp 113–121

  28. Makino N, Sugita Y (1978) J Biol Chem 253:1174–1178

    PubMed  CAS  Google Scholar 

  29. Yamamoto H, Yonetani T (1974) J Biol Chem 249:7964–7968

    PubMed  CAS  Google Scholar 

  30. Zhao XJ, Chen RP, Tengroth C, Spiro TG (1999) Appl Spectrosc 53:1200–1205

    Article  CAS  Google Scholar 

  31. Zhao XJ, Tengroth C, Chen RP, Simpson WR, Spiro TG (1999) J Raman Spectrosc 30:773–776

    Article  CAS  Google Scholar 

  32. Olson JS (1976) Proc Natl Acad Sci USA 73:1140–1144

    Article  PubMed  CAS  Google Scholar 

  33. Sugita Y (1975) J Biol Chem 250:1251–1256

    PubMed  CAS  Google Scholar 

  34. Balakrishnan G, Zhao XJ, Podstawska E, Proniewicz LM, Kincaid JR, Spiro TG (2009) Biochemistry (in press)

  35. Spiro TG, Burke JM (1976) J Am Chem Soc 98:5482–5489

    Article  PubMed  CAS  Google Scholar 

  36. Choi S, Spiro TG, Langry KC, Smith KM (1982) J Am Chem Soc 104:4337–4344

    Article  CAS  Google Scholar 

  37. Choi S, Spiro TG, Langry KC, Smith KM, Budd DL, Lamar GN (1982) J Am Chem Soc 104:4345–4351

    Article  CAS  Google Scholar 

  38. Hu SZ, Smith KM, Spiro TG (1996) J Am Chem Soc 118:12638–12646

    Article  CAS  Google Scholar 

  39. Kaminaka S, Zhou YX, Tsuneshige A, Yonetani T, Kitagawa T (1994) J Am Chem Soc 116:1683–1689

    Article  CAS  Google Scholar 

  40. Ishimori K, Morishima I (1986) Biochemistry 25:4892–4898

    Article  PubMed  CAS  Google Scholar 

  41. Seybert DW, Moffat K (1977) J Mol Biol 113:419–430

    Article  PubMed  CAS  Google Scholar 

  42. Seybert DW, Moffat K, Gibson QH (1975) Biochem Biophys Res Commun 63:43–49

    Article  PubMed  CAS  Google Scholar 

  43. Seybert DW, Moffat K, Gibson QH (1976) J Biol Chem 251:45–52

    PubMed  CAS  Google Scholar 

  44. Yonetani T, Tsuneshige A, Zhou YX, Chen XS (1998) J Biol Chem 273:20323–20333

    Article  PubMed  CAS  Google Scholar 

  45. Fujii M, Hori H, Miyazaki G, Morimoto H, Yonetani T (1993) J Biol Chem 268:15386–15393

    PubMed  CAS  Google Scholar 

  46. Shelnutt JA, Alston K, Ho JY, Yu NT, Yamamoto T, Rifkind JM (1986) Biochemistry 25:620–627

    Article  PubMed  CAS  Google Scholar 

  47. Sudhakar K, Laberge M, Tsuneshige A, Vanderkooi JM (1998) Biochemistry 37:7177–7184

    Article  PubMed  CAS  Google Scholar 

  48. Mukerji I, Spiro TG (1994) Biochemistry 33:13132–13139

    Article  PubMed  CAS  Google Scholar 

  49. Balakrishnan G, Tsai CH, Wu Q, Case MA, Pevsner A, McLendon GL, Ho C, Spiro TG (2004) J Mol Biol 340:857–868

    Article  PubMed  CAS  Google Scholar 

  50. Wang DJ, Zhao XJ, Shen TJ, Ho C, Spiro TG (1999) J Am Chem Soc 121:11197–11203

    Article  CAS  Google Scholar 

  51. Kneipp J, Balakrishnan G, Chen RP, Shen TJ, Sahu SC, Ho NT, Giovannelli JL, Simplaceanu V, Ho C, Spiro TG (2006) J Mol Biol 356:335–353

    Article  PubMed  CAS  Google Scholar 

  52. Guallar V, Jarzecki AA, Friesner RA, Spiro TG (2006) J Am Chem Soc 128:5427–5435

    Article  PubMed  CAS  Google Scholar 

  53. Riccio A, Vitagliano L, di Prisco G, Zagari A, Mazzarella L (2002) Proc Natl Acad Sci USA 99:9801–9806

    Article  PubMed  CAS  Google Scholar 

  54. Vitagliano L, Vergara A, Bonomi G, Merlino A, Verde C, di Prisco G, Howes BD, Smulevich G, Mazzarella L (2008) J Am Chem Soc 130:10527–10535

    Article  PubMed  CAS  Google Scholar 

  55. Ackers GK, Holt JM, Huang YW, Grinkova Y, Klinger AL, Denisov I (2000) Proteins Struct Funct Genet Suppl 4:23–43

    Google Scholar 

  56. Ciaccio C, Coletta A, De Saneti G, Marini S, Coletta M (2008) IUBMB Life 60:112–123

    Article  PubMed  CAS  Google Scholar 

  57. Ishimori K, Hashimoto M, Imai K, Fushitani K, Miyazaki G, Morimoto H, Wada Y, Morishima I (1994) Biochemistry 33:2546–2553

    Article  PubMed  CAS  Google Scholar 

  58. Juszczak L, Samuni U, Friedman J (2005) J Raman Spectrosc 36:350–358

    Article  CAS  Google Scholar 

  59. Sawicki CA, Gibson QH (1976) J Biol Chem 251:1533–1542

    PubMed  CAS  Google Scholar 

  60. Cammarata M, Levantino M, Schotte F, Anfinrud PA, Ewald F, Choi J, Cupane A, Wulff M, Ihee H (2008) Nat Methods 5:881–886

    Article  CAS  Google Scholar 

  61. Unzai S, Eich R, Shibayama N, Olson JS, Morimoto H (1998) J Biol Chem 273:23150–23159

    Article  PubMed  CAS  Google Scholar 

  62. Unzai S, Hori H, Miyazaki G, Shibayama N, Morimoto H (1996) J Biol Chem 271:12451–12456

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grants GM12526 (to T.G.S.) and DK35153 (to J.R.K.). We thank Princeton Instruments (Trenton, NJ, USA) for lending the PI/MAX detector used for this study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to James R. Kincaid or Thomas G. Spiro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balakrishnan, G., Ibrahim, M., Mak, P.J. et al. Linking conformation change to hemoglobin activation via chain-selective time-resolved resonance Raman spectroscopy of protoheme/mesoheme hybrids. J Biol Inorg Chem 14, 741–750 (2009). https://doi.org/10.1007/s00775-009-0487-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-009-0487-7

Keywords

Navigation