Skip to main content

Advertisement

Log in

Auranofin disrupts selenium metabolism in Clostridium difficile by forming a stable Au–Se adduct

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Clostridium difficile is a nosocomial pathogen whose incidence and importance are on the rise. Previous work in our laboratory characterized the central role of selenoenzyme-dependent Stickland reactions in C. difficile metabolism. In this work we have identified, using mass spectrometry, a stable complex formed upon reaction of auranofin (a gold-containing drug) with selenide in vitro. X-ray absorption spectroscopy supports the structure that we proposed on the basis of mass-spectrometric data. Auranofin potently inhibits the growth of C. difficile but does not similarly affect other clostridia that do not utilize selenoproteins to obtain energy. Moreover, auranofin inhibits the incorporation of radioisotope selenium (75Se) in selenoproteins in both Escherichia coli, the prokaryotic model for selenoprotein synthesis, and C. difficile without impacting total protein synthesis. Auranofin blocks the uptake of selenium and results in the accumulation of the auranofin–selenide adduct in the culture medium. Addition of selenium in the form of selenite or l-selenocysteine to the growth medium significantly reduces the inhibitory action of auranofin on the growth of C. difficile. On the basis of these results, we propose that formation of this complex and the subsequent deficiency in available selenium for selenoprotein synthesis is the mechanism by which auranofin inhibits C. difficile growth. This study demonstrates that targeting selenium metabolism provides a new avenue for antimicrobial development against C. difficile and other selenium-dependent pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kean WF, Hart L, Buchanan WW (1997) Br J Rheumatol 36:560–572

    Article  PubMed  CAS  Google Scholar 

  2. Messori L, Marcon G (2004) Met Ions Biol Syst 41:279–304

    PubMed  CAS  Google Scholar 

  3. Becker K, Gromer S, Schirmer RH, Muller S (2000) Eur J Biochem 267:6118–6125

    Article  PubMed  CAS  Google Scholar 

  4. Gromer S, Arscott LD, Williams CH Jr, Schirmer RH, Becker K (1998) J Biol Chem 273:20096–20101

    Article  PubMed  CAS  Google Scholar 

  5. Lobanov AV, Gromer S, Salinas G, Gladyshev VN (2006) Nucleic Acids Res 34:4012–4024

    Article  PubMed  CAS  Google Scholar 

  6. Kuntz AN, Davioud-Charvet E, Sayed AA, Califf LL, Dessolin J, Arner ES, Williams DL (2007) PLoS Med 4:e206

    Article  PubMed  Google Scholar 

  7. Talbot S, Self WT (2008) Br J Pharmacol (in press)

  8. Leinfelder W, Forchhammer K, Veprek B, Zehelein E, Bock A (1990) Proc Natl Acad Sci USA 87:543–547

    Article  PubMed  CAS  Google Scholar 

  9. Veres Z, Tsai L, Scholz TD, Politino M, Balaban RS, Stadtman TC (1992) Proc Natl Acad Sci USA 89:2975–2979

    Article  PubMed  CAS  Google Scholar 

  10. Veres Z, Kim IY, Scholz TD, Stadtman TC (1994) J Biol Chem 269:10597–10603

    PubMed  CAS  Google Scholar 

  11. Ehrenreich A, Forchhammer K, Tormay P, Veprek B, Bock A (1992) Eur J Biochem 206:767–773

    Article  PubMed  CAS  Google Scholar 

  12. Glass RS, Singh WP, Jung W, Veres Z, Scholz TD, Stadtman TC (1993) Biochemistry 32:12555–12559

    Article  PubMed  CAS  Google Scholar 

  13. Forchhammer K, Leinfelder W, Boesmiller K, Veprek B, Bock A (1991) J Biol Chem 266:6318–6323

    PubMed  CAS  Google Scholar 

  14. Forchhammer K, Bock A (1991) J Biol Chem 266:6324–6328

    PubMed  CAS  Google Scholar 

  15. Forchhammer K, Leinfelder W, Bock A (1989) Nature 342:453–456

    Article  PubMed  CAS  Google Scholar 

  16. Papp LV, Lu J, Holmgren A, Khanna KK (2007) Antioxid Redox Signal 9:775–806

    Article  PubMed  CAS  Google Scholar 

  17. Jackson S, Calos M, Myers A, Self WT (2006) J Bacteriol 188:8487–8495

    Article  PubMed  CAS  Google Scholar 

  18. Rother M, Bock A, Wyss C (2001) Arch Microbiol 177:113–116

    Article  PubMed  CAS  Google Scholar 

  19. Lobanov AV, Delgado C, Rahlfs S, Novoselov SV, Kryukov GV, Gromer S, Hatfield DL, Becker K, Gladyshev VN (2006) Nucleic Acids Res 34:496–505

    Article  PubMed  CAS  Google Scholar 

  20. Kelly CP, LaMont JT (1998) Annu Rev Med 49:375–390

    Article  PubMed  CAS  Google Scholar 

  21. Kyne L, Hamel MB, Polavaram R, Kelly CP (2002) Clin Infect Dis 34:346–353

    Article  PubMed  Google Scholar 

  22. McDonald LC, Killgore GE, Thompson A, Owens RC Jr, Kazakova SV, Sambol SP, Johnson S, Gerding DN (2005) N Engl J Med 353:2433–2441

    Article  PubMed  CAS  Google Scholar 

  23. Redelings MD, Sorvillo F, Mascola L (2007) Emerg Infect Dis 13:1417–1419

    PubMed  Google Scholar 

  24. Bourgault AM, Lamothe F, Loo VG, Poirier L (2006) Antimicrob Agents Chemother 50:3473–3475

    Article  PubMed  CAS  Google Scholar 

  25. Pepin J, Valiquette L, Gagnon S, Routhier S, Brazeau I (2007) Am J Gastroenterol 102:2781–2788

    Article  PubMed  Google Scholar 

  26. Gerding DN (2007) Infect Control Hosp Epidemiol 28:113–115

    Article  PubMed  Google Scholar 

  27. Klayman DL, Griffin TS (1973) J Am Chem Soc 91:197–199

    Google Scholar 

  28. Mahoney WC, Hermodson MA (1980) J Biol Chem 255:11199–11203

    PubMed  CAS  Google Scholar 

  29. Apffel A, Fischer S, Goldberg G, Goodley PC, Kuhlmann FE (1995) J Chromatogr 712:177–190

    Article  CAS  Google Scholar 

  30. Schneider D, Schuster O, Schmidbaur H (2005) Dalton Trans 1940–1947

  31. Yang GA, Raptis RG (2003) Inorg Chim Acta 352:98–104

    Article  CAS  Google Scholar 

  32. Freisinger E, Schimanski A, Lippert B (2001) J Biol Inorg Chem 6:378–389

    Article  PubMed  CAS  Google Scholar 

  33. Bryce RA, Charnock JM, Pattrick RAD, Lennie AR (2003) J Phys Chem A 107:2516–2523

    Article  CAS  Google Scholar 

  34. Ruben H, Zalkin A, Faltens MO, Templeton DH (1974) Inorg Chem 13:1836

    Article  Google Scholar 

  35. Moreno MS, Jorissen K, Rehr JJ (2007) Micron 38:1–11

    Article  PubMed  CAS  Google Scholar 

  36. Bradford MM (1976) Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  37. Gladyshev VN, Khangulov SV, Axley MJ, Stadtman TC (1994) Proc Natl Acad Sci USA 91:7708–7711

    Article  PubMed  CAS  Google Scholar 

  38. Stickland LH (1934) Biochem J 28:1746–1759

    PubMed  CAS  Google Scholar 

  39. Stickland LH (1935) Biochem J 29:288–290

    PubMed  CAS  Google Scholar 

  40. Stadtman TC (1978) Methods Enzymol 53:373–382

    Article  PubMed  CAS  Google Scholar 

  41. Sliwkowski MX, Stadtman TC (1988) Proc Natl Acad Sci USA 85:368–371

    Article  PubMed  CAS  Google Scholar 

  42. Lovitt RW, Kell DD, Morris JG (1986) FEMS Microbiol Lett 36:269–273

    Article  CAS  Google Scholar 

  43. Andreesen JR (2004) Curr Opin Chem Biol 8:454–461

    Article  PubMed  CAS  Google Scholar 

  44. Stadtman TC (1996) Annu Rev Biochem 65:83–100

    Article  PubMed  CAS  Google Scholar 

  45. Yoo MH, Xu XM, Carlson BA, Gladyshev VN, Hatfield DL (2006) J Biol Chem 281:13005–13008

    Article  PubMed  CAS  Google Scholar 

  46. Yoo MH, Xu XM, Carlson BA, Patterson AD, Gladyshev VN, Hatfield DL (2007) PLoS ONE 2:e1112

    Article  PubMed  Google Scholar 

  47. Redelings MD, Sorvillo F, Mascola L (2007) Emerg Infect Dis 13:1417–1419

    Google Scholar 

  48. Musher DM, Aslam S, Logan N, Nallacheru S, Bhaila I, Borchert F, Hamill RJ (2005) Clin Infect Dis 40:1586–1590

    Article  PubMed  CAS  Google Scholar 

  49. Gregus Z, Gyurasics A, Csanaky I (2000) Toxicol Sci 57:22–31

    Article  PubMed  CAS  Google Scholar 

  50. Eikens W, Kienitz C, Jones PG, Thone C (1994) J Chem Soc Dalton Trans 83–90

  51. Coplen TB, Bohlke JK, De Bievre P, Ding T, Holden NE, Hopple JA, Krouse HR, Lamberty A, Peiser HS, Revesz K, Rieder SE, Rosman KJR, Roth E, Taylor PDP, Vocke RD, Xiao YK (2002) Pure Appl Chem 74:1987–2017

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Michel Warny (Acambis, Cambridge, MA, USA) for providing C. difficile NAPI/027. We also thank August Böck (University of Munich, Munich, Germany) for providing E. coli strain WL400 (selD). The Au compounds used as models were generous gifts from Susan Miller, University of California San Francisco. XAS work in the Scott group is supported by a grant from the National Institutes of Health (GM042025). Portions of this research were carried out at the Stanford Synchrotron Radiation Laboratory, a national user facility operated by Stanford University on behalf of the US Department of Energy, Office of Basic Energy Sciences. The Stanford Synchrotron Radiation Laboratory Structural Molecular Biology Program is supported by the Department of Energy, Office of Biological and Environmental Research, and by the National Institutes of Health, National Center for Research Resources, Biomedical Technology Program. This work was supported in part by the Intramural Research Program of the National Institutes of Health (NHLBI). This work was also supported in part by grants to W.T.S. from the Florida Department of Health (05-NIR-10) and the National Institutes of Health (ES01434).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William Thomas Self.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary figures S1–S5 (PDF 195 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jackson-Rosario, S., Cowart, D., Myers, A. et al. Auranofin disrupts selenium metabolism in Clostridium difficile by forming a stable Au–Se adduct. J Biol Inorg Chem 14, 507–519 (2009). https://doi.org/10.1007/s00775-009-0466-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-009-0466-z

Keywords

Navigation