Skip to main content

Advertisement

Log in

Inhibition of a Zn(II)-containing enzyme, alcohol dehydrogenase, by anticancer antibiotics, mithramycin and chromomycin A3

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

One of the major attributes for the biological action of the aureolic acid anticancer antibiotics chromomycin A3 (CHR) and mithramycin (MTR) is their ability to bind bivalent cations such as Mg(II) and Zn(II) ions and form high affinity 2:1 complexes in terms of the antibiotic and the metal ion, respectively. As most of the cellular Zn(II) ion is found to be associated with proteins, we have examined the effect of MTR/CHR on the structure and function of a representative structurally well characterized Zn(II) metalloenzyme, alcohol dehydrogenase (ADH) from yeast. MTR and CHR inhibit enzyme activity of ADH with inhibitory constants of micromolar order. Results from size-exclusion column chromatography, dynamic light scattering, and isothermal titration calorimetry have suggested that the mechanism of inhibition of the metalloenzyme by the antibiotics is due to the antibiotic-induced disruption of the enzyme quaternary structure. The nature of the enzyme inhibition, the binding stoichiometry of two antibiotics per monomer, and comparable dissociation constants for the antibiotic and free (or substrate-bound) ADH imply that the association occurs as a consequence of the binding of the antibiotics to Zn(II) ion present at the structural center. Confocal microscopy shows the colocalization of the antibiotic and the metalloenzyme in HepG2 cells, thereby supporting the proposition of physical association between the antibiotic(s) and the enzyme inside the cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 2

Similar content being viewed by others

Abbreviations

ADH:

Alcohol dehydrogenase

BSA:

Bovine serum albumin

CD:

Circular dichroism

CHR:

Chromomycin A3

DLS:

Dynamic light scattering

DPA:

Dipicolinic acid

HEPES:

4-(2-Hydroxyethyl) piperazine-1-ethanesulfonic acid

ITC:

Isothermal titration calorimetry

MTR:

Mithramycin

NAD:

Nicotinamide adenine dinucleotide

NADH:

Reduced nicotinamide adenine dinucleotide

PBS:

Phosphate-buffered saline

Tris:

Tris(hydroxymethyl)aminomethane

References

  1. Calabresi P, Chabner BA (1991) Chemotherapy of neoplastic diseases. In: Hardman JG, Limbird LE (eds) Goodman and Gilman’s: the pharmacological basis of therapeutics, 9th edn. Macmillan, New York, pp 1225–1269

  2. Wohlert SE, Kunzel E, Machinek R, Mendez C, Salas JA, Rohr J (1999) J Nat Prod 62:119–121

    Article  CAS  PubMed  Google Scholar 

  3. Dimaraco A, Arcamone F, Zunino F (1975) In: Corcoran JW, Hahn FE (eds) Antibiotics, mechanism of action of antimicrobial and antitumor agents. Springer, Berlin, pp 101–128

  4. Goldberg IH, Friedmann PA (1971) Annu Rev Biochem 40:775–810

    Article  CAS  PubMed  Google Scholar 

  5. Chatterjee S, Zaman K, Ryu H, Conforto A, Ratan RR (2001) Ann Neurol 49:345–354

    Article  CAS  PubMed  Google Scholar 

  6. Ferrante RJ, Ryu H, Kubilus JK, D’Mello S, Sugars KL, Lee J, Lu P, Smith K, Browne S, Beal MF, Kristal BS, Stavrovskaya IG, Hewett S, Rubinsztein DC, Langley B, Ratan RR (2004) J Neurosci 24:10335–10342

    Article  CAS  PubMed  Google Scholar 

  7. Liacini A, Sylvester J, Li WQ, Zafarullah M (2005) Arthritis Res Ther 7:R777–R783

    Article  CAS  PubMed  Google Scholar 

  8. Fibach E, Bianchi N, Borgatti M, Gambari R (2003) Blood 102:1276–1281

    Article  CAS  PubMed  Google Scholar 

  9. Aich P, Sen R, Dasgupta D (1992) Biochemistry 31:2988–2997

    Article  CAS  PubMed  Google Scholar 

  10. Aich P, Dasgupta D (1995) Biochemistry 34:1376–1385

    Article  CAS  PubMed  Google Scholar 

  11. Majee S, Sen R, Guha S, Bhattacharya D, Dasgupta D (1997) Biochemistry 36:2291–2299

    Article  CAS  PubMed  Google Scholar 

  12. Hou MH, Wang AH (2005) Nucleic Acids Res 33:1352–1361

    Article  CAS  PubMed  Google Scholar 

  13. Cons BM, Fox KR (1989) Nucleic Acids Res 17:5447–5459

    Article  CAS  PubMed  Google Scholar 

  14. Reyzer ML, Brodbelt JS, Kerwin SM, Kumar D (2001) Nucleic Acids Res 29:e103

    Article  CAS  PubMed  Google Scholar 

  15. Devi PG, Pal S, Banerjee R, Dasgupta D (2007) J Inorg Biochem 101:127–137

    Article  CAS  PubMed  Google Scholar 

  16. Kagi JHR, Valee BL (1960) J Biol Chem 235:3188–3192

    CAS  PubMed  Google Scholar 

  17. Liu G, Garrett MR, Men P, Zhu X, Perry G, Smith MA (2005) Biochim Biophys Acta 1741:246–252

    CAS  PubMed  Google Scholar 

  18. Brewer GJ, Askari FK (2003) J Hepatol 42:S13–S21

    Article  Google Scholar 

  19. Das S, Devi PG, Pal S, Dasgupta D (2005) J Biol Inorg Chem 10:25–32

    Article  CAS  PubMed  Google Scholar 

  20. Leskovac V, Trivic S, Pericin D (2002) FEMS Yeast Res 2:481–494

    CAS  PubMed  Google Scholar 

  21. Magonet E, Hayen P, Delforge D, Remacle J (1992) Biochem J 287:361–365

    CAS  PubMed  Google Scholar 

  22. Jin L, Szeto KY, Zhang L, Du W, Sun H (2004) J Inorg Biochem 98:1331–1337

    Article  CAS  PubMed  Google Scholar 

  23. Maret W, Andersson I, Dietrich H, Schneider-Bernlöhr H, Einarsson R, Zeppezauer M (1979) Eur J Biochem 98:501–512

    Article  CAS  PubMed  Google Scholar 

  24. Bortolato M, Besson F, Roux B (1999) Proteins 37:310–318

    Article  CAS  PubMed  Google Scholar 

  25. Todd MJ, Gomez J (2001) J Anal Chem 296:179–187

    CAS  Google Scholar 

  26. Ganzhorn AJ, Green DW, Hershey AD, Gould RM, Plapp BV (1987) J Biol Chem 262:3754–3761

    CAS  PubMed  Google Scholar 

  27. Fersht A (1999) Structure and mechanism in protein science: a guide to enzyme catalysis and protein folding. Freeman, San Francisco

  28. Ramaswamy S, Kratzer DA, Hershey AD, Rogers PH, Arnone A, Eklund H, Plapp BV (1994) J Mol Biol 235:777–779

    Article  CAS  PubMed  Google Scholar 

  29. Vallee BL, Auld DS (1990) Biochemistry 29:5647–5659

    Article  CAS  PubMed  Google Scholar 

  30. Sun HW, Plapp BV (1992) J Mol Evol 34:522–535

    Article  CAS  PubMed  Google Scholar 

  31. Sakoda H, Imanaka T (1992) J Bacteriol 174:1397–1402

    CAS  PubMed  Google Scholar 

  32. Kisters-Woike B, Vangierdegom C, Müller-Hill B (2000) Trends Biochem Sci 25:419–421

    Article  CAS  PubMed  Google Scholar 

  33. NCBI (2008) BLAST: Basic Local Alignment Search Tool. http://www.ncbi.nlm.nih.gov/blast/Blast.cgi

  34. Yang Y, Zhou HM (2001) Biochemistry (Mosc) 66:47–54

    Article  CAS  Google Scholar 

  35. Karlsson A, El-Ahamad M, Johansson K, Shafqat J, Jörnvall H, Eklund H, Ramaswamy S (2003) Chem Biol Interact 143–144:239–245

    Article  PubMed  Google Scholar 

  36. Zhang T, Zhou HM (1996) Int J Biol Macromol 19:113–119

    Article  CAS  PubMed  Google Scholar 

  37. Das S, Dasgupta D (2005) J Inorg Biochem 99:707–715

    Article  CAS  PubMed  Google Scholar 

  38. Lee YM, Lim C (2008) J Mol Biol 379:545–553

    Article  CAS  PubMed  Google Scholar 

  39. Maynard AT, Covell DG (2001) J Am Chem Soc 123:1047–1058

    Article  CAS  PubMed  Google Scholar 

  40. Northrop G, Taylor SG, Northrop RL (1969) Cancer Res 29:1916–1919

    CAS  PubMed  Google Scholar 

  41. Krezel A, Maret W (2006) J Biol Inorg Chem 11:1049–1062

    Article  CAS  PubMed  Google Scholar 

  42. Kröncke KD (2007) Arch Biochem Biophys 463:183–187

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Manabendra Mukherjee, Surface Physics Division, Saha Institute of Nuclear Physics, for allowing us to use the Zetasizer Nanoseries DLS instrument (Malvern Instruments, UK) and Mojammel Haque Mondal, Surface Physics Division, Saha Institute of Nuclear Physics, for his assistance during the DLS experiments. We also thank Swasti Raychaudhuri, Cyrstallography and Molecular Biology Division, Saha Institute of Nuclear Physics, for his assistance during the confocal microscopy experiments. We acknowledge CambridgeSoft for the free trial of the ChemDraw Pro 10.0 software package we used to draw the chemical structures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dipak Dasgupta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Devi, P.G., Chakraborty, P.K. & Dasgupta, D. Inhibition of a Zn(II)-containing enzyme, alcohol dehydrogenase, by anticancer antibiotics, mithramycin and chromomycin A3 . J Biol Inorg Chem 14, 347–359 (2009). https://doi.org/10.1007/s00775-008-0451-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-008-0451-y

Keywords

Navigation