Skip to main content

Advertisement

Log in

Zinc and antibiotic resistance: metallo-β-lactamases and their synthetic analogues

  • Minireview
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Antibiotic resistance to clinically employed β-lactam antibiotics currently poses a very serious threat to the clinical community. The origin of this resistance is the expression of several β-lactamases that effectively hydrolyze the amide bond in β-lactam compounds. These β-lactamases are classified into two major categories: serine β-lactamases and metallo-β-lactamases. The metalloenzymes use one or two zinc ions in their active sites to catalyze the hydrolysis of all classes of β-lactam antibiotics, including carbapenems. As there is no clinically useful inhibitor for the metallo-β-lactamases, it is important to understand the mechanism by which these enzymes catalyze the hydrolysis of antibiotics. In this regard, the development of synthetic analogues will be very useful in understanding the mechanism of action of metallo-β-lactamases. This review highlights some important contributions made by various research groups in the area of synthetic analogues of metallo-β-lactamases, with major emphasis on the role of dinuclear Zn(II) complexes in the hydrolysis of β-lactam antibiotics.

Graphical abstract

The production of metallo-β-lactamases by bacteria is becoming a serious threat to the clinical community because these enzymes are responsible for the development of antibiotic resistance to the commonly employed β-lactam antibiotics. To understand the mechanism of the hydrolysis of the β-lactam ring in the antibiotics by metallo-β-lactamases, a great deal of effort has been directed to the design and synthesis of biomimetic models for these enzymes. This review highlights some important contributions made by various research groups in the area of synthetic analogues of metallo-β-lactamases, with major emphasis on the role of dinuclear Zn(II) complexes in the hydrolysis of β-lactam antibiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Fig. 5
Scheme 3
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Scheme 4
Fig. 12
Scheme 5
Fig. 13
Scheme 6
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Williams RJP (1989) In: Mills CF (ed) Zinc in human biology. Springer, Berlin, pp 15–31

  2. Wilcox DE (1996) Chem Rev 96:2435–2458 and references therein

    Google Scholar 

  3. Lipscomb WN, Sträter N (1996) Chem Rev 96:2375–2433 and references therein

    Google Scholar 

  4. Bock WC, Katz AK, Glusker JP (1995) J Am Chem Soc 117:3754–3765

    Article  CAS  Google Scholar 

  5. Bode W, Gomisruth FX, Huber R, Zwilling R, Stocker W (1992) Nature 358:164–167

    Article  PubMed  CAS  Google Scholar 

  6. Ippolito JA, Christianson DW (1994) Biochemistry 33:15241–15249

    Article  PubMed  CAS  Google Scholar 

  7. Hough E, Hansen LK, Birknes B, Jynge K, Hansen S, Hordvik A, Little C, Dodson E, Derewenda Z (1989) Nature 338:357–360

    Article  PubMed  CAS  Google Scholar 

  8. Klabunde T, Strater N, Frohlich R, Witzel H, Krebs B (1996) J Mol Biol 259:737–748

    Article  PubMed  CAS  Google Scholar 

  9. Christianson DW, Fierke CA (1996) Acc Chem Res 29:331–339

    Article  CAS  Google Scholar 

  10. Christianson DW, Lipscomb WN (1989) Acc Chem Res 22:62–69

    Article  CAS  Google Scholar 

  11. Sträter N, Lipscomb WN, Klabunde T, Krebs B (1996) Angew Chem Int Ed 35:2025–2055

    Google Scholar 

  12. Steinhagen H, Helmchem G (1996) Angew Chem Int Ed 35:2339–2342

    Article  CAS  Google Scholar 

  13. Butler A (1998) Science 281:207–209

    Article  PubMed  CAS  Google Scholar 

  14. Weston J (2005) Chem Rev 105:2151–2174 and references therein

    Google Scholar 

  15. Bush K (1998) Clin Infect Dis 27:S48–S53 and references therein

  16. Livermore DM (1998) J Antimicrob Chemother 41(Suppl D):25–41

    Article  PubMed  CAS  Google Scholar 

  17. Kurosaki H, Yamaguchi Y, Higashi T, Soga K, Matsueda S, Yumoto H, Misumi S, Yamagata Y, Arakawa Y, Goto M (2005) Angew Chem Int Ed 44:3861–3864

    Article  CAS  Google Scholar 

  18. Higgins PG, Wisplinghoff H, Stefanik D, Seifert H (2004) Antimicrob Agents Chemother 48:1586–1592

    Article  PubMed  CAS  Google Scholar 

  19. Volbeda A, Lahm A, Sakiyama F, Suck D (1991) EMBO J 10:1607–1618

    PubMed  CAS  Google Scholar 

  20. Crowder MW, Spencer J, Vila AJ (2006) Acc Chem Res 39:721–728 and references therein

    Google Scholar 

  21. Carfi A, Pares S, Duee E, Galleni M, Duez C, Frère J-M, Dideberg O (1995) EMBO J 14:4914–4921

    PubMed  CAS  Google Scholar 

  22. Carfi A, Duée E, Galleni M, Frère J-M, Dideberg O (1998) Acta Crystallogr D 54:313–323

    Article  PubMed  CAS  Google Scholar 

  23. Fabiane SM, Sohi MK, Wan T, Payne DJ, Bateson JH, Mitchell T, Sutton B (1998) Biochemistry 37:12404–12411

    Article  PubMed  CAS  Google Scholar 

  24. Paul-Soto R, Bauer R, Frère J-M, Galleni M, Meyer-Klaucke W, Nolting H, Rossolini GM, Seny de D, Hernandez-Valladares M, Zeppezauer M, Adolph H-W (1999) J Biol Chem 274:13242–13249

    Article  PubMed  CAS  Google Scholar 

  25. Llarrul LI, Fabiane SM, Kowalski JM, Bennett B, Sutton BJ, Vila AJ (2007) J Biol Chem 282:18276–18285

    Article  Google Scholar 

  26. Crisp J, Conners R, Garrity JD, Carenbauer AL, Crowder MW, Spencer J (2007) Biochemistry 46:10664–10674

    Article  PubMed  CAS  Google Scholar 

  27. Galleni M, Lamotte-Brasseur J, Rossolini GM, Spencer J, Dideberg O, Frère JM (2001) Antimicrob Agents Chemother 45:660–663

    Article  PubMed  CAS  Google Scholar 

  28. Concha NO, Rasmussen BA, Bush K, Herzberg O (1996) Structure 4:823–836

    Article  PubMed  CAS  Google Scholar 

  29. Paul-Soto R, Hernandez-Valladares M, Galleni M, Bauer R, Zeppezauer M, Frère J-M, Adolph H-W (1998) FEBS Lett 438:137–140

    Article  PubMed  CAS  Google Scholar 

  30. Peraro MD, Vila AJ, Carloni P, Klein ML (2007) J Am Chem Soc 129:2808–2816

    Article  Google Scholar 

  31. Valladares MH, Felici A, Weber G, Adolph HW, Zeppezauer M, Rossolini GM, Amicosante G, Frère J-M, Galleni M (1997) Biochemistry 36:11534–11541

    Article  Google Scholar 

  32. Garau G, Bebrone C, Anne C, Galleni M, Frère J-M, Dideberg O (2005) J Mol Biol 345:785–795

    Article  PubMed  CAS  Google Scholar 

  33. Spencer J, Read J, Sessions RB, Howell S, Blackburn GM, Gamblin SJ (2005) J Am Chem Soc 127:14439–14444

    Article  PubMed  CAS  Google Scholar 

  34. Crawford PA, Yang K-W, Sharma N, Bennett B, Crowder MW (2005) Biochemistry 44:5168–5176

    Article  PubMed  CAS  Google Scholar 

  35. Ullah JH, Walsh TR, Taylor IA, Emery DC, Verma CS, Gamblin SJ, Spencer J (1998) J Mol Biol 284:125–136

    Article  PubMed  CAS  Google Scholar 

  36. García-Saéz1 I, Mercuri PS, Papamicael C, Kahn R, Frére J-M, Galleni M, Rossolini GM, Dideberg O (2003) J Mol Biol 325:651–660

    Article  PubMed  Google Scholar 

  37. Mercuri PS, Bouillenne F, Boschi L, Lamotte-Brasseur J, Amicosante G, Devreese B, van Beeumen J, Frère J-M, Rossolini GM, Galleni M (2001) Antimicrob Agents Chemother 45:1254–1262

    Article  PubMed  CAS  Google Scholar 

  38. Morán-Barrio J, González JM, Lisa MN, Costello AL, Peraro MD, Carloni P, Bennett B, Tierney DL, Limansky AS, Viale AM, Vila AJ (2007) J Biol Chem 282:18286–18293

    Article  PubMed  Google Scholar 

  39. Koike T, Takamura M, Kimura E (1994) J Am Chem Soc 116:8443–8449

    Article  CAS  Google Scholar 

  40. Koike T, Kimura E (2004) Encyclopedia of supramolecular chemistry. Marcel Dekker, New York, pp 178–188

  41. Koike T, Kimura E (1991) J Am Chem Soc 113:8935–8941

    Article  CAS  Google Scholar 

  42. Hayashi T (2004) Encyclopedia of supramolecular chemistry. Marcel Dekker, New York, pp 1631–1638

  43. Gensmantel NP, Proctor P, Page MI (1980) J Chem Soc Perkin Trans 2 1725–1732

    Google Scholar 

  44. Montoya-Pelaez PJ, Brown RS (2002) Inorg Chem 41:309–316

    Article  PubMed  CAS  Google Scholar 

  45. Gross F, Vahrenkamp H (2005) Inorg Chem 44:4433–4440

    Article  PubMed  CAS  Google Scholar 

  46. Kaminskaia NV, Spingler B, Lippard SJ (2000) J Am Chem Soc 122:6411–6422

    Article  CAS  Google Scholar 

  47. Kaminskaia NV, He C, Lippard SJ (2000) Inorg Chem 39:3365–3373

    Article  PubMed  CAS  Google Scholar 

  48. Bennett B, Holz RC (1997) J Am Chem Soc 119:1923–1933

    Article  CAS  Google Scholar 

  49. Kaminskaia NV, Spingler B, Lippard SJ (2001) J Am Chem Soc 123:6555–6563

    Article  PubMed  CAS  Google Scholar 

  50. Wang Z, Fast W, Benkovic SJ (1998) J Am Chem Soc 120:10788–10789

    Article  CAS  Google Scholar 

  51. McMannus-Munoz S, Crowder MW (1999) Biochemistry 38:1547–1553

    Article  Google Scholar 

  52. Park H, Brothers EN, Merz KM Jr (2005) J Am Chem Soc 127:4232–4241

    Article  PubMed  CAS  Google Scholar 

  53. Garrity JD, Bennett B, Crowder MW (2005) Biochemistry 44:1078–1087

    Article  PubMed  CAS  Google Scholar 

  54. Bauer-Siebenlist B, Meyer F, Farkas E, Vidovic D, Dechert S (2005) Chem Eur J 11:4349–4360

    Article  CAS  Google Scholar 

  55. Meyer F, Pritzkow H (2005) Eur J Inorg Chem 2346–2351

  56. Bauer-Siebenlist B, Dechert S, Meyer F (2005) Chem Eur J 11:5343–5352 and references therein

    Google Scholar 

  57. Tamilselvi A, Nethaji M, Mugesh G (2006) Chem Eur J 12:7797–7806

    Article  CAS  Google Scholar 

  58. Sakiyama H, Mochizuki R, Sugawara A, Sakamoto M, Nishida Y, Yamasaki M (1999) J Chem Soc Dalton Trans 997–1000

  59. Díaz N, Suárez D, Merz KM Jr (2001) J Am Chem Soc 123:9867–9879 and references therein

    Google Scholar 

  60. Peraro MD, Vila AJ, Carloni P (2003) Inorg Chem 42:4245–4247

    Article  Google Scholar 

  61. Orellano EG, Girardini JE, Cricco JA, Ceccarelli EA, Vila AJ (1998) Biochemistry 37:10173–10180 and references therein

    Google Scholar 

  62. Bounaga S, Laws AP, Galleni M, Page MI (1998) Biochem J 331:61–68

    Google Scholar 

  63. Rasia RM, Vila AJ (2002) Biochemistry 41:1853–1860

    Article  PubMed  CAS  Google Scholar 

  64. Park H-S, Nam S-H, Lee JK, Yoon C, Mannervik B, Benkovic SJ, Kim H-S (2006) Science 311:535–538

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Department of Science and Technology (DST), New Delhi, India. G.M. acknowledges the DST for the award of Ramanna Fellowship and A.T. thanks the University Grants Commission (UGC), New Delhi, for a research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Govindasamy Mugesh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tamilselvi, A., Mugesh, G. Zinc and antibiotic resistance: metallo-β-lactamases and their synthetic analogues. J Biol Inorg Chem 13, 1039–1053 (2008). https://doi.org/10.1007/s00775-008-0407-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-008-0407-2

Keywords

Navigation