Skip to main content
Log in

Syntheses and characterization of vitamin B12–Pt(II) conjugates and their adenosylation in an enzymatic assay

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Aiming at the use of vitamin B12 as a drug delivery carrier for cytotoxic agents, we have reacted vitamin B12 with trans-[PtCl(NH3)2(H2O)]+, [PtCl3(NH3)] and [PtCl4]2−. These Pt(II) precursors coordinated directly to the Co(III)-bound cyanide, giving the conjugates [{Co}–CN–{trans-PtCl(NH3)2}]+ (5), [{Co}–CN–{trans-PtCl2(NH3)}] (6), [{Co}–CN–{cis-PtCl2(NH3)}] (7) and [{Co}–CN–{PtCl3}] (8) in good yields. Spectroscopic analyses for all compounds and X-ray structure elucidation for 5 and 7 confirmed their authenticity and the presence of the central “Co–CN–Pt” motif. Applicability of these heterodinuclear conjugates depends primarily on serum stability. Whereas 6 and 8 transmetallated rapidly to bovine serum albumin proteins, compounds 5 and 7 were reasonably stable. Around 20% of cyanocobalamin could be detected after 48 h, while the remaining 80% was still the respective vitamin B12 conjugates. Release of the platinum complexes from vitamin B12 is driven by intracellular reduction of Co(III) to Co(II) to Co(I) and subsequent adenosylation by the adenosyltransferase CobA. Despite bearing a rather large metal complex on the β-axial position, the cobamides in 5 and 7 are recognized by the corrinoid adenosyltransferase enzyme that catalyzes the formation of the organometallic C–Co bond present in adenosylcobalamin after release of the Pt(II) complexes. Thus, vitamin B12 can potentially be used for delivering metal-containing compounds into cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 2
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Warren MJ, Raux E, Schubert HL, Escalante-Semerena JC (2002) Nat Prod Rep 19:390–412

    Article  PubMed  CAS  Google Scholar 

  2. Norberg B (1999) J Intern Med 246:237–238

    Article  PubMed  CAS  Google Scholar 

  3. Okuda K (1999) J Gastroenterol Hepatol 14:301–308

    Article  PubMed  CAS  Google Scholar 

  4. Chanarin I (2000) Br J Haematol 111:407–415

    Article  PubMed  CAS  Google Scholar 

  5. Seetharam B, Bose S, Li N (1999) J Nutr 129:1761–1764

    PubMed  CAS  Google Scholar 

  6. Fonseca MV, Buan NR, Horswill AR, Rayment I, Escalante-Semerena JC (2002) J Biol Chem 277:33127–33131

    Article  PubMed  CAS  Google Scholar 

  7. Fonseca MV, Escalante-Semerena JC (2001) J Biol Chem 276:32101–32108

    Article  PubMed  CAS  Google Scholar 

  8. Fonseca MV, Escalante-Semerena JC (2000) J Bacteriol 182:4304–4309

    Article  PubMed  CAS  Google Scholar 

  9. Hall DA, Vander Kooi CW, Stasik CN, Stevens SY, Zuiderweg ERP, Matthews RG (2001) Proc Natl Acad Sci USA 98:9521–9526

    Article  PubMed  CAS  Google Scholar 

  10. Walker GA, Murphy S, Huennekens FM (1969) Arch Biochem Biophys 134:95–105

    Article  PubMed  CAS  Google Scholar 

  11. Boyle SM, Markham GD, Hafner EW, Wright JM, Tabor H, Tabor CW (1984) Gene 30:129–136

    Article  PubMed  CAS  Google Scholar 

  12. St. Maurice M, Mera PE, Taranto MP, Sesma F, Escalante-Semerena JC, Rayment I (2007) J Biol Chem 282:2596–2605

    Article  PubMed  CAS  Google Scholar 

  13. Buan NR, Escalante-Semerena JC (2006) J Biol Chem 281:16971–16977

    Article  PubMed  CAS  Google Scholar 

  14. Johnson CL, Buszko ML, Bobik TA (2004) J Bacteriol 186:7881–7887

    Article  PubMed  CAS  Google Scholar 

  15. Suh S, Escalante-Semerena JC (1995) J Bacteriol 177:921–925

    PubMed  CAS  Google Scholar 

  16. Bauer CB, Fonseca MV, Holden HM, Thoden JB, Thompson TB, Escalante-Semerena JC, Rayment I (2001) Biochemistry 40:361–374

    Article  PubMed  CAS  Google Scholar 

  17. Cannon MJ, Myszka DG, McGreevy JM, Holden JA, West FG, Grissom CB (2001) FASEB J 15:A556–A556

    Google Scholar 

  18. Smeltzer CC, Cannon MJ, Pinson PR, Munger JDJ, West FG, Grissom CB (2001) Org Lett 3:799–801

    Article  PubMed  CAS  Google Scholar 

  19. Grissom CB, Horton RA, McCain K, Harris JM (2005) FASEB J 19:A833–A833

    Google Scholar 

  20. Bagnato JD, Eilers AL, Horton RA, Grissom CB (2004) J Org Chem 69:8987–8996

    Article  PubMed  CAS  Google Scholar 

  21. Horton RA, McCain KS, Harris JM, Grissom CB (2005) Biophys J 88:264A–264A

    Google Scholar 

  22. Collins DA, Hogenkamp HPC, O’Connor MK, Naylor S, Benson LM, Hardyman TJ, Thorson LM (2000) Mayo Clin Proc 75:568–580

    Article  PubMed  CAS  Google Scholar 

  23. Russell-Jones G, McTavish K, McEwan J, Rice J, Nowotnik D (2004) J Inorg Biochem 98:1625–1633

    Article  PubMed  CAS  Google Scholar 

  24. Kunze S, Zobi F, Kurz P, Spingler B, Alberto R (2004) Angew Chem Int Ed 43:5025–5029

    Article  CAS  Google Scholar 

  25. Mundwiler S, Spingler B, Kurz P, Kunze S, Alberto R (2005) Chem Eur J 11:4089–4095

    Article  CAS  Google Scholar 

  26. Lippert B (1999) Cisplatin: chemistry and biochemistry of a leading anticancer drug. Helvetica Chimica Acta, Zurich

    Google Scholar 

  27. Kraker AJ, Hoeschele JD, Elliott WL, Showalter HDH, Sercel AD, Farrell NP (1992) J Med Chem 35:4526–4532

    Article  PubMed  CAS  Google Scholar 

  28. STOE & Cie (1999) CELL. STOE & Cie, Darmstadt

  29. Altomare A, Burla MC, Camalli M, Cascarano GL, Giacovazzo C, Guagliardi A, Moliterni AGG, Polidori G, Spagna R (1999) J Appl Crystallogr 32:115–119

    Article  CAS  Google Scholar 

  30. Sheldrick GM (1997) University of Göttingen, Germany

  31. Berkowitz D, Hushon JM, Whitfield HJJ, Roth J, Ames BN (1968) J Bacteriol 96:215–220

    Article  PubMed  CAS  Google Scholar 

  32. Fanchiang YT, Bratt GT, Hogenkamp HPC (1983) J Chem Soc Dalton Trans 1929–1934

  33. Bax A, Marzilli LG, Summers MF (1987) J Am Chem Soc 109:566–574

    Article  CAS  Google Scholar 

  34. Brown KL, Hakimi JM, Jacobsen DW (1984) J Am Chem Soc 106:7894–7899

    Article  CAS  Google Scholar 

  35. Hamza MSA, Zou X, Brown KL, van Eldik R (2001) Inorg Chem 40:5440–5447

    Article  PubMed  CAS  Google Scholar 

  36. Nakamoto K (1978) Infrared and Raman spectra of inorganic and coordination compounds, 3rd edn. Wiley, New York

    Google Scholar 

  37. Spingler B, Mundwiler S, Ruiz-Sánchez P, van Staveren DR, Alberto R (2007) Eur J Inorg Chem 2641–2647

  38. Armstrong DR, Fortune R, Perkins PG (1974) Inorg Chim Acta 9:9–18

    Article  CAS  Google Scholar 

  39. Montero EI, Perez JM, Schwartz A, Fuertes MA, Malinge JM, Alonso C, Leng M, Navarro-Ranninger C (2002) ChemBioChem 3:61–670

    Article  PubMed  CAS  Google Scholar 

  40. Khazanov E, Barenholz Y, Gibson D, Najajreh Y (2002) J Med Chem 45:5196–5204

    Article  PubMed  CAS  Google Scholar 

  41. DeConti RC, Toftness BR, Lange RC, Creasey WA (1973) Cancer Res 33:1310–1315

    PubMed  CAS  Google Scholar 

  42. Trynda-Lemiesz L, Keppler BK, Kozlowski H (1999) J Inorg Biochem 73:123–128

    Article  PubMed  CAS  Google Scholar 

  43. Ivanov AI, Christodoulou J, Parkinson JA, Barnham KJ, Tucker A, Woodrow J, Sadler PJ (1998) J Biol Chem 273:14721–14730

    Article  PubMed  CAS  Google Scholar 

  44. Zhao R, Lind J, Merenyi G, Eriksen TE (1997) J Chem Soc Perkin Trans 2:569–574

    Google Scholar 

  45. Xia L, Cregan AG, Berben LA, Brasch NE (2004) Inorg Chem 43:6848–6857

    Article  PubMed  CAS  Google Scholar 

  46. Cole WC, Wolf W (1980) Chem Biol Interact 30:223–235

    Article  PubMed  CAS  Google Scholar 

  47. Trynda-Lemiesz L, Kozlowski H, Keppler BK (1999) J Inorg Biochem 77:141–146

    Article  PubMed  CAS  Google Scholar 

  48. Taylor RT, Hanna ML (1970) Arch Biochem Biophys 141:247–257

    Article  PubMed  CAS  Google Scholar 

  49. Stich TA, Buan NR, Escalante-Semerena JC, Brunold TC (2005) J Am Chem Soc 127:8710–8719

    Article  PubMed  CAS  Google Scholar 

  50. Pezacka E (1993) Biochem Biophys Acta 1157:167–177

    PubMed  CAS  Google Scholar 

  51. Johnson CLV, Buszko ML, Bobik TA (2004) J Bacteriol 186:7881–7887

    Article  PubMed  CAS  Google Scholar 

  52. Lexa D, Saveant JM (1976) J Am Chem Soc 98:2652–2658

    Article  PubMed  CAS  Google Scholar 

  53. Lexa D, Saveant JM, Zickler J (1977) J Am Chem Soc 99:2786–2790

    Article  PubMed  CAS  Google Scholar 

  54. Suh SJ, Escalante-Semerena JC (1995) J Bacteriol 177:1918–1918

    CAS  Google Scholar 

Download references

Acknowledgements

This project was supported financially by Swiss National Science Foundation grant 117658 (P.S.-R.); N.B. and J.C.E.-S. were supported by PHS grant R01-GM40313 to J.C.E.-S. Thanks to Laurent Bigler, Institute of Organic Chemistry at the University of Zurich, for careful MS measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger Alberto.

Electronic supplementary material

Below is the link to the electronic supplementary material.

775_2007_329_MOESM1_ESM.pdf

ESI-MS spectra of compounds 58, 31P-NMR of 5 in phosphate buffer at pH 0.4 and crystallographic data for 5 and 7. (PDF 320 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruiz-Sánchez, P., Mundwiler, S., Spingler, B. et al. Syntheses and characterization of vitamin B12–Pt(II) conjugates and their adenosylation in an enzymatic assay. J Biol Inorg Chem 13, 335–347 (2008). https://doi.org/10.1007/s00775-007-0329-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-007-0329-4

Keywords

Navigation