Skip to main content
Log in

Pure manganese(III) 5,10,15,20-tetrakis(4-benzoic acid)porphyrin (MnTBAP) is not a superoxide dismutase mimic in aqueous systems: a case of structure–activity relationship as a watchdog mechanism in experimental therapeutics and biology

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Superoxide is involved in a plethora of pathological and physiological processes via oxidative stress and/or signal transduction pathways. Superoxide dismutase (SOD) mimics have, thus, been actively sought for clinical and mechanistic purposes. Manganese(III) 5,10,15,20-tetrakis(4-benzoic acid)porphyrin (MnTBAP) is one of the most intensely explored “SOD mimics” in biology and medicine. However, we show here that this claimed SOD activity of MnTBAP in aqueous media is not corroborated by comprehensive structure–activity relationship studies for a wide set of Mn porphyrins and that MnTBAP from usual commercial sources contains different amounts of noninnocent trace impurities (Mn clusters), which inhibited xanthine oxidase and had SOD activity in their own right. In addition, the preparation and thorough characterization of a high-purity MnTBAP is presented for the first time and confirmed that pure MnTBAP has no SOD activity in aqueous medium. These findings call for an assessment of the relevance and suitability of using MnTBAP (or its impurities) as a mechanistic probe and antioxidant therapeutic; conclusions on the physiological and pathological role of superoxide derived from studies using MnTBAP of uncertain purity should be examined judiciously. An unequivocal distinction between the biological effects due to MnTBAP and that of its impurities can only be unambiguously made if a pure sample is/was used. This work also illustrates the contribution of fundamental structure–activity relationship studies not only for drug design and optimization, but also as a “watchdog” mechanism for checking/spotting eventual incongruence of drug activity in chemical and biological settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. At pH 7.8 the carboxylato groups of MnTBAP are deprotonated and the resulting species bears an overall −3 or −4 charge depending on the oxidation state of the Mn: [MnIIITBAP]3− (six negative charges on the ring and three positive charges on the MnIII center) or [MnIITBAP]4− (six negative charges on the ring and two positive charges on the MnII center).

Abbreviations

DMF:

N,N-Dimethylformamide

EDTA:

Sodium salt of ethylenediaminetetraacetic acid

ESI:

Electrospray ionization

Fc:

Ferrocene

H2TBAP:

5,10,15,20-Tetrakis(4-benzoic acid)porphyrin

H2TBAP-TME:

5,10,15,20-Tetrakis(4-benzoic acid)porphyrin tetramethyl ester

IC20 :

Concentration that causes 20% inhibition of xanthine oxidase activity

MnTBAP:

Manganese(III) 5,10,15,20-tetrakis(4-benzoic acid)porphyrin

Mn(TBAP-TME)Cl:

Manganese(III) 5,10,15,20-tetrakis(4-benzoic acid)porphyrin tetramethyl ester chloride

MnTE-2-PyP5+ :

Manganese(III) 5,10,15,20-tetrakis(N-ethylpyridinium-2-yl)porphyrin

MnTnHex-2-PyP5+ :

Manganese(III) 5,10,15,20-tetrakis(N-n-hexylpyridinium-2-yl)porphyrin

MS:

Mass spectrometry

MS/MS:

Tandem mass spectrometry

NHE:

Normal hydrogen electrode

NMR:

Nuclear magnetic resonance

RNS:

Reactive nitrogen species

ROS:

Reactive oxygen species

SAR:

Structure–activity relationship

SOD:

Superoxide dismutase

X:

Xanthine

XO:

Xanthine oxidase

References

  1. Salvemini D, Riley DP, Cuzzocrea S (2002) Nat Rev Drug Discov 1:367–374

    Article  PubMed  CAS  Google Scholar 

  2. Szabó C, Ischiropoulos H, Radi R. (2007) Nat Rev Drug Discov 6:662–680

    Article  PubMed  CAS  Google Scholar 

  3. Salvemini D, Cuzzocrea S (2003) Crit Care Med 31:S29–S38

    Article  PubMed  CAS  Google Scholar 

  4. Pervaiz S, Clement MV (2007) Int J Biochem Cell Biol 39:1297–1304

    Article  PubMed  CAS  Google Scholar 

  5. Culotta VC, Yang M, O’Halloran TV (2006) Biochim Biophys Acta Mol Cell Res 1763:747–758

    Article  CAS  Google Scholar 

  6. Spasojević I, Chen Y, Noel TJ, Yu Y, Cole MP, Zhang L, Zhao Y, St Clair DK, Batinić-Haberle I (2007) Free Radic Biol Med 42:1193–1200

    Article  PubMed  CAS  Google Scholar 

  7. Batinić-Haberle I, Spasojević I, Stevens RD, Bondurant B, Okado-Matsumoto A, Fridovich I, Vujasković Z, Dewhirst MW (2006) Dalton Trans 617–624

  8. Spasojević I, Batinić-Haberle I, Rebouças JS, Idemori YM, Fridovich I (2003) J Biol Chem 278:6831–6837

    Article  PubMed  Google Scholar 

  9. Spasojević I, Batinić-Haberle I (2001) Inorg Chim Acta 317:230–242

    Article  Google Scholar 

  10. Batinić-Haberle I, Benov L, Spasojević I, Hambright P, Crumbliss AL, Fridovich I (1999) Inorg Chem 38:4011–4022

    Article  CAS  Google Scholar 

  11. Saba H, Batinić-Haberle I, Munusamy S, Mitchell T, Lichti C, Megyesi J, MacMillan-Crow LA (2007) Free Radic Biol Med 42:1571–1578

    Article  PubMed  CAS  Google Scholar 

  12. Wood PM (1988) Biochem J 253:287–289

    PubMed  CAS  Google Scholar 

  13. Sawyer DT, Valentine JS (1981) Acc Chem Res 14:393–400

    Article  CAS  Google Scholar 

  14. Vance CK, Miller AF (1998) J Am Chem Soc 120:461–467

    Article  CAS  Google Scholar 

  15. Ellerby RM, Cabelli DE, Graden JA, Valentine JS (1996) J Am Chem Soc 118:6556–6561

    Article  CAS  Google Scholar 

  16. Goldstein S, Fridovich I, Czapski G (2006) Free Radic Biol Med 41:937–941

    Article  PubMed  CAS  Google Scholar 

  17. Zhao Y, Chaiswing L, Oberley TD, Batinić-Haberle I, St Clair W, Epstein CJ, St Clair D (2005) Cancer Res 65:1401–1405

    Article  PubMed  CAS  Google Scholar 

  18. Waud WR, Brady FO, Wiley RD, Rajagopalan KV (1975) Arch Biochem Biophys 169:695–701

    Article  PubMed  CAS  Google Scholar 

  19. Gritzner G, Kůta J (1984) Pure Appl Chem 56:461–466

    Article  Google Scholar 

  20. Gagné RR, Koval CA, Lisensky GC (1980) Inorg Chem 19:2854–2855

    Article  Google Scholar 

  21. Johnstone RAW, Nunes MLPG, Pereira MM, Gonsalves, AMd’AR, Serra AC (1996) Heterocycles 43:1423–1437

    Article  CAS  Google Scholar 

  22. Lindsey JS, Schereiman IC, Hsu HC, Kearney PC, Marguerettaz AM (1987) J Org Chem 52:827–836

    Article  CAS  Google Scholar 

  23. do Nascimento E, Silva GdeF, Caetano FA, Fernandes MAM, da Silva DC, de Carvalho MEMD, Pernaut JM, Rebouças JS, Idemori YM (2005) J Inorg Biochem 99:1193–1204

    Article  PubMed  CAS  Google Scholar 

  24. Lahaye D, Muthukumaran K, Hung C-H, Gryko D, Rebouças JS, Spasojević I, Batinić-Haberle I, Lindsey JS (2007) Bioorg Med Chem 15:7066–7086

    Article  PubMed  CAS  Google Scholar 

  25. Hambright P (1989) Inorg Chim Acta 157:95–98

    Article  CAS  Google Scholar 

  26. Spasojević I, Batinić-Haberle I, Stevens RD, Hambright P, Thorpe AN, Grodkowski J, Neta P, Fridovich I (2001) Inorg Chem 40:726–739 (and references therein)

    Article  PubMed  CAS  Google Scholar 

  27. Riley DP (1999) Chem Rev 99:2573–2587

    Article  PubMed  CAS  Google Scholar 

  28. Pasternack RF, Huber PR, Boyd P, Engasser G, Francesconi L, Gibbs E, Fasella P, Venturo GC, Hinds LdeC (1972) J Am Chem Soc 94:4511–4517

    Article  PubMed  CAS  Google Scholar 

  29. Buchler JW, Kokisch W, Smith PD (1978) Struct Bonding 34:79–134 (and references therein)

    CAS  Google Scholar 

  30. Archibald FS, Fridovich I (1982) Arch Biochem Biophys 214:452–463

    Article  PubMed  CAS  Google Scholar 

  31. Dismukes GC (1996) Chem Rev 96:2909–2926

    Article  PubMed  CAS  Google Scholar 

  32. Evangelisti M, Bartolomé J (2000) J Magn Magn Mater 221:99–102

    Article  CAS  Google Scholar 

  33. Bommer JC, Hambright P (2002) In: Smith AG, Witty M (eds) Heme, chlorophyll, and bilins: methods and protocols. Humana, Totowa, pp 39–67

    Google Scholar 

  34. Rebouças JS, de Carvalho MEMD, Idemori YM (2002) J Porphyrins Phthalocyanines 6:50–55

    Article  Google Scholar 

  35. Kadish KM, Han BC, Franzen MM, Araullo-McAdams C (1990) J Am Chem Soc 112:8364–8368

    Article  CAS  Google Scholar 

  36. Day BJ, Shawen S, Liochev SI, Crapo JD (1995) J Pharmacol Exp Ther 275:1227–1232

    PubMed  CAS  Google Scholar 

  37. Ferrer-Sueta G, Vitturi D, Batinić-Haberle I, Fridovich I, Goldstein S, Czapski G, Radi R (2003) J Biol Chem 278:27432–27438

    Article  PubMed  CAS  Google Scholar 

  38. Lee J, Hunt JA, Groves JT (1998) J Am Chem Soc 120:6053–6061

    Article  CAS  Google Scholar 

  39. Coulter AD, Emerson JP, Kurtz DM, Cabelli DE (2006) J Am Chem Soc 122:11555–11556

    Article  CAS  Google Scholar 

  40. Ferrer-Sueta G, Hanninbal L, Batinić-Haberle I, Radi R (2006) Free Radic Biol Med 41:503–512

    Article  PubMed  CAS  Google Scholar 

  41. Batinić-Haberle I, Spasojević I, Stevens RD, Hambright P, Neta P, Okado-Matsumoto A, Fridovich I (2004) J Chem Soc Dalton Trans 1696–1702

  42. Al-Mahrebi M, Fridovich I, Benov L (2002) Arch Biochem Biophys 402:104–109

    Article  CAS  Google Scholar 

  43. Sanchez RJ, Srinivasan C, Munroe WH, Wallace MA, Martins J, Kao TY, Le K, Gralla EB, Valentine JS (2005) J Biol Inorg Chem 10:913–923

    Article  PubMed  CAS  Google Scholar 

  44. Lin Y-T, Hoang H, Hsieh SI, Rangel N, Foster AL, Sampayo JN, Lithgow GJ, Srinivasan C (2006) Free Radic Biol Med 40:1185–1193

    Article  PubMed  CAS  Google Scholar 

  45. Culotta VC, Yang M, Hall MD (2005) Eukaryot Cell 4:1159–1165

    Article  PubMed  CAS  Google Scholar 

  46. Korsvik C, Patil S, Seal S, Self WT (2007) Chem Commun 1056–1058 (and references therein)

  47. Goldstein S, Czapski G, Heller A (2005) Free Radic Biol Med 38:839–845

    Article  PubMed  CAS  Google Scholar 

  48. Hansch C, Leo A, Taft RW (1991) Chem Rev 91:165–195

    Article  CAS  Google Scholar 

  49. Andrieux CP, Hapiot P, Savéant J-M (1987) J Am Chem Soc 109:3768–3775

    Article  CAS  Google Scholar 

  50. Che Y, Tsushima M, Matsumoto F, Okajima T, Tokuda K, Ohsaka T (1996) J Phys Chem 100:20134–20137

    Article  CAS  Google Scholar 

  51. Ashur I, Brandis A, Greenwald M, Vakrat-Haglili Y, Rosenbach-Belkin V, Scheer H, Scherz A (2003) J Am Chem Soc 125:8852–8861

    Article  PubMed  CAS  Google Scholar 

  52. Tauskela JS, Brunette E, Kiedrowski L, Lortie K, Hewitt M, Morley P (2006) J Neurochem 98:1234–1342

    Article  CAS  Google Scholar 

  53. Tauskela JS, Brunette E, O’Reilly N, Mealing G, Comas T, Gendron TF, Monette R, Morley P (2005) FASEB J 19:1734–1736

    PubMed  CAS  Google Scholar 

  54. Konorev EA, Kotamraju S, Zhao H, Shasi H, Kalivendi S, Joseph J, Kalyanaraman B (2002) Free Radic Biol Med 33:988–987

    Article  PubMed  CAS  Google Scholar 

  55. Groves JT (1999) Curr Opin Chem Biol 226

  56. Munroe W, Kingsley C, Durazo A, Gralla EB, Imlay JA, Srinivasan C, Valentine JS (2007) J Inorg Biochem 101:1875–1882

    Article  PubMed  CAS  Google Scholar 

  57. Shirazi A, Goff HM (1982) J Am Chem Soc 104:6318–6322

    Article  CAS  Google Scholar 

  58. VanAtta RB, Strouse CE, Hanson LK, Valentine JS (1987) J Am Chem Soc 109:1425–1434

    Article  Google Scholar 

  59. Sisemore MF, Selke M, Burstyn JN, Valentine JS (1997) Inorg Chem 36:979–984

    Article  PubMed  CAS  Google Scholar 

  60. Zhao Y, Chaiswing L, Oberley T D, Batinić-Haberle I, St. Clair W, Epstein CJ, St. Clair D (2005) Cancer Res 65:1401–1405

    Article  PubMed  CAS  Google Scholar 

  61. Moeller BJ, Batinić-Haberle I, Spasojevic I, Rabbani ZN, Anscher MS, Vujasković Z, Dewhirst MW (2005) Int J Rad Oncol Biol Phys 63:545–552

    Article  CAS  Google Scholar 

  62. Tse H, Milton MJ, Piganelli JD (2004) Free Radic Biol Med 36:233–247

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the valuable discussions with Irwin Fridovich and Peter Hambright. This work was supported by the National Institutes of Health grants NIH IR21-ESO/3682, U19A167798-01, and NIH/NCI DCCC Core Grant 5-P30-CA14236-29.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ines Batinić-Haberle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rebouças, J.S., Spasojević, I. & Batinić-Haberle, I. Pure manganese(III) 5,10,15,20-tetrakis(4-benzoic acid)porphyrin (MnTBAP) is not a superoxide dismutase mimic in aqueous systems: a case of structure–activity relationship as a watchdog mechanism in experimental therapeutics and biology. J Biol Inorg Chem 13, 289–302 (2008). https://doi.org/10.1007/s00775-007-0324-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-007-0324-9

Keywords

Navigation