Skip to main content
Log in

A theoretical study of zinc(II) interactions with amino acid models and peptide fragments

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Density functional theory calculations have been employed to study the interaction between the Zn2+ ion and some standard amino acid models. The highest affinities towards the Zn2+ ion are predicted for serine, cysteine, and histidine. Relatively high affinities are reported also for proline and glutamate/aspartate residues. It was found that the zinc complexes with cysteine adopt a tetrahedral conformation. Conversely, complexes with one or two histidine moieties remain in an octahedral geometry, while those with three or more histidine groups adopt a square-planar geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Mitchell P (1976) Biol Rev 41:445–502

    Google Scholar 

  2. Blankeship RE (ed) (2002) Molecular mechanisms of photosynthesis. Blackwell, Oxford

    Google Scholar 

  3. Berridge MJ, Bootman MD, Lipp P (1998) Nature 395:645–648

    Article  PubMed  CAS  Google Scholar 

  4. Tajmir-Riahi HA, Langlais M, Savoie R (1988) Nucleic Acids Res 16:751–762

    Article  PubMed  CAS  Google Scholar 

  5. O’Halloran TV (1993) Science 261:715–725

    Article  PubMed  CAS  Google Scholar 

  6. Orvig C, Abrams MJ (1999) Chem Rev 99:2201–2204

    Article  PubMed  CAS  Google Scholar 

  7. Jurisson SS, Berning D, Jia W, Ma D (1993) Chem Rev 93:1137–1156

    Article  CAS  Google Scholar 

  8. Braun E, Eichen Y, Sivan U, Ben-Yoseph G (1998) Nature 391:775–778

    Article  PubMed  CAS  Google Scholar 

  9. Yang Y, Constance BH, Deymier PA, Hoying J, Raghavan S, Zelinski BJJ (2004) J Mater Sci 39:1927–1933

    Article  CAS  Google Scholar 

  10. Trzaskowski B, Deymier PA, Adamowicz L (2006) J Mater Chem 16:4649–4656

    Article  CAS  Google Scholar 

  11. Hallman PS, Perrin DD, Watt AE (1971) Biochem J 121N:549–555

    Google Scholar 

  12. Michael SF, Kilfoil VJ, Schmidt MH, Amann BT, Berg JM (1992) Proc Natl Acad Sci USA 89:4796–4800

    Article  PubMed  CAS  Google Scholar 

  13. Corradi AB (1992) Coord Chem Rev 117:45–98

    Article  Google Scholar 

  14. Munoz-Páez A, Pappalardo RR, Marcos ES (1995) J Am Chem Soc 117:11710–11720

    Article  Google Scholar 

  15. King RB (ed) (2006) Encyclopedia of inorganic chemistry, 2nd edn. Wiley, New York

    Google Scholar 

  16. Zhang C, Janiak CJ (2004) Chem Crystallogr 31:29–35

    Article  CAS  Google Scholar 

  17. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  18. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  19. Blomberg MRA, Siegbahn PEM, Babcock GT (1998) J Am Chem Soc 120:8812–8824

    Article  CAS  Google Scholar 

  20. Curtiss LA, Raghavachari K, Redfern RC, Pople JA (2000) J Chem Phys 112:7374–7383

    Article  CAS  Google Scholar 

  21. Miertus S, Scrocco E, Tomasi J (1981) Chem Phys 55:117–129

    Article  CAS  Google Scholar 

  22. Johnson RD III (ed) (2005) NIST computational chemistry comparison and benchmark database, NIST standard reference database number 101, release 12

  23. Frisch MJ et al (2003) Gaussian 03, revision B.03. Gaussian, Pittsburgh

    Google Scholar 

  24. Siegbahn PEM, Blomberg MRA (1999) Annu Rev Phys Chem 50:221–249

    Article  PubMed  CAS  Google Scholar 

  25. Siegbahn PEM (2001) Theor Chem Acc 105:197–206

    CAS  Google Scholar 

  26. Myari A, Malandrinos G, Deligiannakis Y, Plakatouras JC, Hadjiliadis N, Nagy Z, Sovágó IJ (2001) Inorg Biochem 85:253–261

    Article  CAS  Google Scholar 

  27. Chen W, Sammynaiken R, Huang YN (2000) J Appl Phys 88:5188–5193

    Article  CAS  Google Scholar 

  28. Yi G, Sun B, Yang F, Chen DJ (2001) Mater Chem 11:2928–2929

    Article  CAS  Google Scholar 

  29. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) Nucleic Acids Res 28:235–242

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

NSF grant no. 0303863 and CPU time from University of Arizona supercomputing center are gratefully acknowledged. Figure 2 was generated using the xyzviewer software designed by Sven de Marothy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bartosz Trzaskowski.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material (PDF 57 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trzaskowski, B., Adamowicz, L. & Deymier, P.A. A theoretical study of zinc(II) interactions with amino acid models and peptide fragments. J Biol Inorg Chem 13, 133–137 (2008). https://doi.org/10.1007/s00775-007-0306-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-007-0306-y

Keywords

Navigation