Skip to main content
Log in

Transition metal complexes as mediator-titrants in protein redox potentiometry

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

A selection of nine macrocyclic FeIII/II and CoIII/II transition metal complexes has been chosen to serve as a universal set of mediator-titrants in redox potentiometry of protein samples. The potential range spanned by these mediators is approximately from +300 to −700 mV vs the normal hydrogen electrode, which covers the range of most protein redox potentials accessible in aqueous solution. The complexes employed exhibit stability in both their oxidized and their reduced forms as well as pH-independent redox potentials within the range 6 < pH < 9. The mediators were also chosen on the basis of their very weak visible absorption maxima in both oxidation states, which will enable (for the first time) optical redox potentiometric titrations of proteins with relatively low extinction coefficients. This has previously been impractical with organic mediators, such as indoles, viologens and quinones, whose optical spectra interfere strongly with those of the protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

EPR:

Electron paramagnetic resonance

NHE:

Normal hydrogen electrode

References

  1. Clark WM (1960) The oxidation–reduction potentials of organic systems. Williams and Wilkins, Baltimore

    Google Scholar 

  2. Dutton PL (1978) Methods Enzymol 54:411–435

    Article  PubMed  CAS  Google Scholar 

  3. Wilson GS (1978) Methods Enzymol 54:396–410

    PubMed  CAS  Google Scholar 

  4. Meckstroth ML, Norris BJ, Heineman WR (1981) Bioelectrochem Bioenerg 8:63–70

    Article  CAS  Google Scholar 

  5. Fultz ML, Durst RA (1982) Anal Chim Acta 140:1–18

    Article  CAS  Google Scholar 

  6. Bernhardt PV, Lawrance GA, Hambley TW (1989) J Chem Soc Dalton Trans 1059–1065

  7. Bernhardt PV, Comba P, Hambley TW (1993) Inorg Chem 32:2804–2809

    Article  CAS  Google Scholar 

  8. Geue RJ, Hambley TW, Harrowfield JM, Sargeson AM, Snow MR (1984) J Am Chem Soc 106:5478–5488

    Article  CAS  Google Scholar 

  9. Creaser II, Harrowfield JM, Herlt AJ, Sargeson AM, Springborg J, Geue RJ, Snow MR (1977) J Am Chem Soc 99:3181–3182

    Article  CAS  Google Scholar 

  10. Bruce JI, Gahan LR, Hambley TW, Stranger R (1993) Inorg Chem 32:5997–6002

    Article  CAS  Google Scholar 

  11. Donlevy TM, Gahan LR, Hambley TW, Stranger R (1992) Inorg Chem 31:4376–4382

    Article  CAS  Google Scholar 

  12. Bernhardt PV, Bygott AMT, Geue RJ, Hendry AJ, Korybut-Daszkiewicz BR, Lay PA, Pladziewicz JR, Sargeson AM, Willis AC (1994) Inorg Chem 33:4553–4561

    Article  CAS  Google Scholar 

  13. Wieghardt K, Schmidt W, Herrmann W, Kueppers HJ (1983) Inorg Chem 22:2953–2956

    Article  CAS  Google Scholar 

  14. Wieghardt K, Bossek U, Chaudhuri P, Herrmann W, Menke BC, Weiss J (1982) Inorg Chem 21:4308–4314

    Article  CAS  Google Scholar 

  15. Stanbury DM (1989) Adv Inorg Chem 33:69–138

    CAS  Google Scholar 

  16. Myer YP, Saturno AF, Verma BC, Pande A (1979) J Biol Chem 254:11202–11207

    PubMed  CAS  Google Scholar 

  17. Norris BJ, Meckstroth ML, Heineman WR (1976) Anal Chem 48:630–632

    Article  PubMed  CAS  Google Scholar 

  18. Eddowes MJ, Hill HAO (1977) J Chem Soc Chem Commun 771–772

  19. Taylor JF, Morgan VE (1942) J Biol Chem 144:15–20

    CAS  Google Scholar 

  20. Mie Y, Sonoda K, Kishita M, Krestyn E, Neya S, Funasaki N, Taniguchi I (2000) Electrochim Acta 45:2903–2909

    Article  CAS  Google Scholar 

  21. Liu A, Wei M, Honma I, Zhou H (2005) Anal Chem 77:8068–8074

    Article  PubMed  CAS  Google Scholar 

  22. Johnson JM, Halsall HB, Heineman WR (1983) Anal Biochem 133:186–189

    Article  PubMed  CAS  Google Scholar 

  23. Zhang C, Haruyama T, Kobatake E, Aizawa M (2000) Anal Chim Acta 408:225–232

    Article  CAS  Google Scholar 

  24. Bourbonnais R, Rochefort D, Paice MG, Leech D (2001) ACS Symp Ser 785:391–399

    Article  CAS  Google Scholar 

  25. Winkler JR, Gray HB (1992) Chem Rev 92:369–379

    Article  CAS  Google Scholar 

  26. Bechtold R, Kuehn C, Lepre C, Isied SS (1986) Nature 322:286–288

    Article  PubMed  CAS  Google Scholar 

  27. Che CM, Margalit R, Chiang HJ, Gray HB (1987) Inorg Chim Acta 135:33–35

    Article  CAS  Google Scholar 

  28. Conrad DW, Scott RA (1989) J Am Chem Soc 111:3461–3463

    Article  CAS  Google Scholar 

  29. Luo J, Wishart JF, Isied SS (1998) J Am Chem Soc 120:12970–12971

    Article  CAS  Google Scholar 

  30. Mauk AG, Bordignon E, Gray HB (1982) J Am Chem Soc 104:7654–7657

    Article  CAS  Google Scholar 

  31. Macyk J, van Eldik R (2003) Dalton Trans 2704–2709

  32. Carney MJ, Lesniak JS, Likar MD, Pladziewicz JR (1984) J Am Chem Soc 106:2565–2569

    Article  CAS  Google Scholar 

  33. Ficke JT, Pladziewicz JR, Sheu EC, Lappin AG (1991) Inorg Chem 30:4282–4285

    Article  CAS  Google Scholar 

  34. Pladziewicz JR, Accola MA, Osvath P, Sargeson AM (1993) Inorg Chem 32:2525–2533

    Article  CAS  Google Scholar 

  35. Mizuta T, Yamamoto T, Miyoshi K, Kushi Y (1990) Inorg Chim Acta 175:121–126

    Article  CAS  Google Scholar 

  36. Mizuta T, Wang J, Miyoshi K (1993) Bull Chem Soc Jpn 66:2547–2551

    Article  CAS  Google Scholar 

  37. Ozarowski A, McGarvey BR, Drake JE (1995) Inorg Chem 34:5558–5566

    Article  CAS  Google Scholar 

  38. Sharma VK, Szilagyi PA, Homonnay Z, Kuzmann E, Vertes A (2005) Eur J Inorg Chem:4393–4400

  39. Pohl K, Wieghardt K, Kaim W, Steenken S (1988) Inorg Chem 27:440–447

    Article  CAS  Google Scholar 

  40. Pilbrow JR (1990) Transition ion electron paramagnetic resonance. Oxford University Press, Oxford

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge financial support from the Australian Research Council (DP0343405). We also thank L.R. Gahan for a generous gift of [Co(AMME-N5S-sar)]Cl3 and [Co(CLME-N4S2-sar)]Cl3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul V. Bernhardt.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bernhardt, P.V., Chen, KI. & Sharpe, P.C. Transition metal complexes as mediator-titrants in protein redox potentiometry. J Biol Inorg Chem 11, 930–936 (2006). https://doi.org/10.1007/s00775-006-0148-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-006-0148-z

Keywords

Navigation