Skip to main content
Log in

FTIR spectroelectrochemical study of the activation and inactivation processes of [NiFe] hydrogenases: effects of solvent isotope replacement and site-directed mutagenesis

  • Original Article
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The kinetics of the activation and anaerobic inactivation processes of Desulfovibrio gigas hydrogenase have been measured in D2O by FTIR spectroelectrochemistry. A primary kinetic solvent isotope effect was observed for the inactivation process but not for the activation step. The kinetics of these processes have been also measured after replacement of a glutamic residue placed near the active site of an analogous [NiFe] hydrogenase from Desulfovibrio fructosovorans. Its replacement by a glutamine affected greatly the kinetics of the inactivation process but only slightly the activation process. The interpretation of the experimental results is that the rate-limiting step for anaerobic inactivation is the formation from water of a μ-OH bridge at the hydrogenase active site, and that Glu25 has a role in this step.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cammack R (2001) In: Cammack R, Frey M, Robson R (eds) Hydrogen as a fuel. Taylor & Francis, London, pp 159–180

  2. Volbeda A, Charon MH, Piras C, Hatchikian EC, Frey M, Fontecilla-Camps JC (1995) Nature 373:580–587

    CAS  PubMed  Google Scholar 

  3. Volbeda A, Garcin E, Piras C, De Lacey AL, Fernandez VM, Hatchikian EC, Frey M, Fontecilla-Camps JC (1996) J Am Chem Soc 118:12989–12996

    Article  CAS  Google Scholar 

  4. Bagley KA, Van Garderen CJ, Chen M, Duin EC, Albracht SPJ, Woodruff WH (1994) Biochemistry 33:9229–9236

    CAS  PubMed  Google Scholar 

  5. Bagley KA, Duin EC, Roseboom W, Albracht SPJ, Woodruff WH (1995) Biochemistry 34:5527–5535

    CAS  PubMed  Google Scholar 

  6. Happe RP, Roseboom W, Pierik AJ, Albracht SPJ, Bagley KA (1997) Nature 385:126

    CAS  PubMed  Google Scholar 

  7. Higuchi Y, Ogata H, Miki K, Yasuoka N, Yagi T (1999) Structure 7:549–556

    CAS  PubMed  Google Scholar 

  8. Garcin E, Vernede X, Hatchikian EC, Volbeda A, Frey M, Fontecilla-Camps JC (1999) Structure 7:557–566

    CAS  PubMed  Google Scholar 

  9. Fernandez VM, Hatchikian EC, Cammack R (1985) Biochim Biophys Acta 832:69–79

    CAS  Google Scholar 

  10. Moura JJG, Moura I, Huyhn BH, Kruger HJ, Teixeira M, DuVarney RC, DerVartanian DV, Xavier AV, Peck HD Jr, LeGall J (1982) Biochem Biophys Res Commun 108:1388–1393

    CAS  PubMed  Google Scholar 

  11. Fernandez VM, Hatchikian EC, Patil DS, Cammack R (1986) Biochim Biophys Acta 883:145–154

    Article  CAS  Google Scholar 

  12. Teixeira M, Moura I, Xavier AV, Huyhn BH, DerVartanian DV, Peck HD Jr, LeGall J, Moura JJG (1985) J Biol Chem 260:8942–8950

    CAS  PubMed  Google Scholar 

  13. Cammack R, Patil DS, Hatchikian EC, Fernandez VM (1987) Biochim Biophys Acta 912:98–109

    CAS  Google Scholar 

  14. Roberts LM, Lindahl PA (1995) J Am Chem Soc 117:2565–2572

    CAS  Google Scholar 

  15. De Lacey AL, Hatchikian EC, Volbeda A, Frey M, Fontecilla-Camps JC, Fernandez VM (1997) J Am Chem Soc 119:7181–7189

    Article  Google Scholar 

  16. Coremans JMCC, van der Zwaan JW, Albracht SPJ (1992) Biochim Biophys Acta 1119:157–168

    CAS  PubMed  Google Scholar 

  17. Mege RM, Bourdillon C (1985) J Biol Chem 260:14701–14706

    CAS  PubMed  Google Scholar 

  18. Jones AK, Lamle SE, Pershad HR, Vincent KA, Albracht SPJ, Armstrong FA (2003) J Am Chem Soc 125:8505–8514

    Article  CAS  PubMed  Google Scholar 

  19. Van der Zwaan JW, Coremans JMCC, Bouwens ECM, Albracht SPJ (1990) Biochim Biophys Acta 1041:101–110

    PubMed  Google Scholar 

  20. Davidson G, Choudhury SB, Gu Z, Bose K, Roseboom W, Albracht SPJ, Maroney MJ (2000) Biochemistry 39:7468–7479

    CAS  PubMed  Google Scholar 

  21. Carepo M, Tierney DL, Brondino CD, Yang TC, Pamplona A, Telser J, Moura I, Moura JJG, Hoffman BM (2002) J Am Chem Soc 124:281–286

    CAS  PubMed  Google Scholar 

  22. Fan HJ, Hall MB (2001) J Biol Inorg Chem 6:467–473

    Article  CAS  PubMed  Google Scholar 

  23. Stein M, Lubitz W (2002) Curr Opin Chem Biol 6:243–249

    Article  CAS  PubMed  Google Scholar 

  24. Stadler C, De Lacey AL, Montet Y, Volbeda A, Fontecilla-Camps JC, Conesa JC, Fernandez VM (2002) Inorg Chem 41:4424–4434

    Article  CAS  PubMed  Google Scholar 

  25. Cammack R, Fernández VM, Hatchikian EC (1994) Methods Enzymol 243:43–68

    Article  CAS  Google Scholar 

  26. Dementin S, Burlat B, DeLacey AL, Pardo A, Adryanczyk-Perrier G, Guigliarelli B, Fernández VM, Rousset M (2004) J Biol Chem 279:10508–10513

    Article  PubMed  Google Scholar 

  27. Covington AK, Paabo M, Robinson RA, Bates RG (1968) Anal Chem 40:700–706

    CAS  Google Scholar 

  28. Moss D, Nabedryk E, Breton J, Mäntele W (1990) Eur J Biochem 187:565–572

    CAS  PubMed  Google Scholar 

  29. Van der Spek TM, Arendsen AF, Happe RP, Yun S, Kimberley KA, Stufkens DJ, Hagen WR, Albracht SPJ (1996) Eur J Biochem 237:629–634

    PubMed  Google Scholar 

  30. De Lacey AL, Stadler C, Fernandez VM, Hatchikian EC, Fan HJ, Li S, Hall MB (2002) J Biol Inorg Chem 7:318–326

    PubMed  Google Scholar 

  31. Hatchikian EC, Traore AS, Fernandez VM, Cammack R (1990) Eur J Biochem 187:635–643

    CAS  PubMed  Google Scholar 

  32. Rousset M, Montet Y, Guigliarelli B, Forget N, Asso M, Bertrand P, Fontecilla-Camps JC, Hatchikian EC (1998) Proc Natl Acad Sci USA 95:11625–11630

    CAS  PubMed  Google Scholar 

  33. De Lacey AL, Fernandez VM, Rousset M, Cavazza C, Hatchikian EC (2003) J Biol Inorg Chem 8:129–134

    Article  PubMed  Google Scholar 

  34. Hille R (1991) Biochemistry 30:8522–8529

    CAS  PubMed  Google Scholar 

  35. Bishop GR, Davidson VL (1995) Biochemistry 34:12082–12086

    CAS  PubMed  Google Scholar 

  36. Glickman MH, Klinman JP (1995) Biochemistry 34:14077–14092

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Spanish MCYT (project BQU2003-04221) and CAM (project 07N/0068/2002) and by grant G5RD-CT-2002-00750 from the European Commission Competitive and Sustainable Growth Programme. M.R. is “Laboratoire de Recherche Conventionné” with the CEA, no. 25V. We thank Dr A. Volbeda for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio L. De Lacey.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Lacey, A.L., Pardo, A., Fernández, V.M. et al. FTIR spectroelectrochemical study of the activation and inactivation processes of [NiFe] hydrogenases: effects of solvent isotope replacement and site-directed mutagenesis. J Biol Inorg Chem 9, 636–642 (2004). https://doi.org/10.1007/s00775-004-0559-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-004-0559-7

Keywords

Navigation