Skip to main content

Advertisement

Log in

Transcriptional regulation of FRZB in chondrocytes by Osterix and Msx2

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Introduction

Osteoarthritis is a common joint disease that causes destruction of articular cartilage and severe inflammation surrounding knee and hip joints. However, to date, effective therapeutic reagents for osteoarthritis have not been developed because the underlying molecular mechanisms are complex. Recent genetic findings suggest that a Wnt antagonist, frizzled-related protein B (FRZB), is a potential therapeutic target for osteoarthritis. Therefore, this study aimed to examine the transcriptional regulation of FRZB in chondrocytes.

Materials and methods

Frzb/FRZB expression was assessed by RT-qPCR analyses in murine articular chondrocytes and SW1353 chondrocyte cell line. Overexpression and knockdown experiments were performed using adenovirus and lentivirus, respectively. Luciferase-reporter and chromatin immunoprecipitation assays were performed for determining transcriptional regulation. Protein–protein interaction was determined by co-immunoprecipitation analysis.

Results

Frzb was highly expressed in cartilages, especially within articular chondrocytes. Interleukin-1α markedly reduced Frzb expression in articular chondrocytes in association with cartilage destruction and increases in ADAM metallopeptidase with thrombospondin type 1 motif (Adamts) 4 and Adamts5 expression. Bone morphogenetic protein 2 (BMP2) increased FRZB expression in SW1353 cells through Smad signaling. Osterix and msh homeobox 2 (Msx2), both of which function as downstream transcription factors of BMP2, induced FRZB expression and upregulated its promoter activity. Co-immunoprecipitation results showed a physical interaction between Osterix and Msx2. Knockdown of either Osterix or Msx2 inhibited BMP2-dependent FRZB expression. Chromatin immunoprecipitation indicated a direct association of Osterix and Msx2 with the FRZB gene promoter.

Conclusion

These results suggest that BMP2 regulates FRZB expression through Osterix and Msx2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yoshimura N, Muraki S, Oka H, Mabuchi A, En-Yo Y, Yoshida M, Saika A, Yoshida H, Suzuki T, Yamamoto S, Ishibashi H, Kawaguchi H, Nakamura K, Akune T (2009) Prevalence of knee osteoarthritis, lumbar spondylosis, and osteoporosis in Japanese men and women: the research on osteoarthritis/osteoporosis against disability study (in eng). J Bone Miner Metab 27:620–628. https://doi.org/10.1007/s00774-009-0080-8

    Article  PubMed  Google Scholar 

  2. Creamer P, Hochberg MC (1997) Osteoarthritis (in eng). Lancet (London, England) 350:503–508. https://doi.org/10.1016/s0140-6736(97)07226-7

    Article  CAS  Google Scholar 

  3. Schumacher BL, Block JA, Schmid TM, Aydelotte MB, Kuettner KE (1994) A novel proteoglycan synthesized and secreted by chondrocytes of the superficial zone of articular cartilage (in eng). Arch Biochem Biophys 311:144–152. https://doi.org/10.1006/abbi.1994.1219

    Article  CAS  PubMed  Google Scholar 

  4. Saito T, Nishida K, Furumatsu T, Yoshida A, Ozawa M, Ozaki T (2013) Histone deacetylase inhibitors suppress mechanical stress-induced expression of RUNX-2 and ADAMTS-5 through the inhibition of the MAPK signaling pathway in cultured human chondrocytes (in eng). Osteoarthritis Cartilage 21:165–174. https://doi.org/10.1016/j.joca.2012.09.003

    Article  CAS  PubMed  Google Scholar 

  5. Pincus T, Wang X, Chung C, Sokka T, Koch GG (2005) Patient preference in a crossover clinical trial of patients with osteoarthritis of the knee or hip: face validity of self-report questionnaire ratings (in eng). J Rheumatol 32:533–539

    PubMed  Google Scholar 

  6. Glyn-Jones S, Palmer AJ, Agricola R, Price AJ, Vincent TL, Weinans H, Carr AJ (2015) Osteoarthritis (in eng). Lancet (London, England) 386:376–387. https://doi.org/10.1016/s0140-6736(14)60802-3

    Article  CAS  Google Scholar 

  7. Leyns L, Bouwmeester T, Kim SH, Piccolo S, De Robertis EM (1997) Frzb-1 is a secreted antagonist of Wnt signaling expressed in the Spemann organizer (in eng). Cell 88:747–756. https://doi.org/10.1016/s0092-8674(00)81921-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kawaguchi H (2009) Regulation of osteoarthritis development by Wnt-beta-catenin signaling through the endochondral ossification process (in eng). J Bone Miner Res: Off J Am Soc Bone Miner Res 24:8–11. https://doi.org/10.1359/jbmr.081115

    Article  CAS  Google Scholar 

  9. Loughlin J, Dowling B, Chapman K, Marcelline L, Mustafa Z, Southam L, Ferreira A, Ciesielski C, Carson DA, Corr M (2004) Functional variants within the secreted frizzled-related protein 3 gene are associated with hip osteoarthritis in females (in eng). Proc Natl Acad Sci USA 101:9757–9762. https://doi.org/10.1073/pnas.0403456101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lories RJ, Peeters J, Bakker A, Tylzanowski P, Derese I, Schrooten J, Thomas JT, Luyten FP (2007) Articular cartilage and biomechanical properties of the long bones in Frzb-knockout mice (in eng). Arthritis Rheum 56:4095–4103. https://doi.org/10.1002/art.23137

    Article  CAS  PubMed  Google Scholar 

  11. Zhu M, Tang D, Wu Q, Hao S, Chen M, Xie C, Rosier RN, O’Keefe RJ, Zuscik M, Chen D (2009) Activation of beta-catenin signaling in articular chondrocytes leads to osteoarthritis-like phenotype in adult beta-catenin conditional activation mice (in eng). J Bone Miner Res: Off J Am Soc Bone Miner Res 24:12–21. https://doi.org/10.1359/jbmr.080901

    Article  CAS  Google Scholar 

  12. Ono K, Hata K, Nakamura E, Ishihara S, Kobayashi S, Nakanishi M, Yoshida M, Takahata Y, Murakami T, Takenoshita S, Komori T, Nishimura R, Yoneda T (2021) Dmrt2 promotes transition of endochondral bone formation by linking Sox9 and Runx2 (in eng). Commun Biol 4:326. https://doi.org/10.1038/s42003-021-01848-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Amano K, Hata K, Muramatsu S, Wakabayashi M, Takigawa Y, Ono K, Nakanishi M, Takashima R, Kogo M, Matsuda A, Nishimura R, Yoneda T (2011) Arid5a cooperates with Sox9 to stimulate chondrocyte-specific transcription (in eng). Mol Biol Cell 22:1300–1311. https://doi.org/10.1091/mbc.E10-07-0566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Takigawa Y, Hata K, Muramatsu S, Amano K, Ono K, Wakabayashi M, Matsuda A, Takada K, Nishimura R, Yoneda T (2010) The transcription factor Znf219 regulates chondrocyte differentiation by assembling a transcription factory with Sox9 (in eng). J Cell Sci 123:3780–3788. https://doi.org/10.1242/jcs.071373

    Article  CAS  PubMed  Google Scholar 

  15. Nishimura R, Hata K, Matsubara T, Wakabayashi M, Yoneda T (2012) Regulation of bone and cartilage development by network between BMP signalling and transcription factors (in eng). J Biochem 151:247–254. https://doi.org/10.1093/jb/mvs004

    Article  CAS  PubMed  Google Scholar 

  16. Stanton H, Golub SB, Rogerson FM, Last K, Little CB, Fosang AJ (2011) Investigating ADAMTS-mediated aggrecanolysis in mouse cartilage (in eng). Nat Protoc 6:388–404. https://doi.org/10.1038/nprot.2010.179

    Article  CAS  PubMed  Google Scholar 

  17. Takahata Y, Nakamura E, Hata K, Wakabayashi M, Murakami T, Wakamori K, Yoshikawa H, Matsuda A, Fukui N, Nishimura R (2019) Sox4 is involved in osteoarthritic cartilage deterioration through induction of ADAMTS4 and ADAMTS5 (in eng). FASEB J: Off Publ Fed Am Soc Exp Biol 33:619–630. https://doi.org/10.1096/fj.201800259R

    Article  CAS  Google Scholar 

  18. Gebauer M, Saas J, Sohler F, Haag J, Söder S, Pieper M, Bartnik E, Beninga J, Zimmer R, Aigner T (2005) Comparison of the chondrosarcoma cell line SW1353 with primary human adult articular chondrocytes with regard to their gene expression profile and reactivity to IL-1beta (in eng). Osteoarthritis Cartilage 13:697–708. https://doi.org/10.1016/j.joca.2005.04.004

    Article  CAS  PubMed  Google Scholar 

  19. Nishimura R, Hata K, Ikeda F, Ichida F, Shimoyama A, Matsubara T, Wada M, Amano K, Yoneda T (2008) Signal transduction and transcriptional regulation during mesenchymal cell differentiation (in eng). J Bone Miner Metab 26:203–212. https://doi.org/10.1007/s00774-007-0824-2

    Article  PubMed  Google Scholar 

  20. Imamura T, Takase M, Nishihara A, Oeda E, Hanai J, Kawabata M, Miyazono K (1997) Smad6 inhibits signalling by the TGF-beta superfamily (in eng). Nature 389:622–626. https://doi.org/10.1038/39355

    Article  CAS  PubMed  Google Scholar 

  21. Matsubara T, Kida K, Yamaguchi A, Hata K, Ichida F, Meguro H, Aburatani H, Nishimura R, Yoneda T (2008) BMP2 regulates Osterix through Msx2 and Runx2 during osteoblast differentiation (in eng). J Biol Chem 283:29119–29125. https://doi.org/10.1074/jbc.M801774200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Akiyama H, Lefebvre V (2011) Unraveling the transcriptional regulatory machinery in chondrogenesis (in eng). J Bone Miner Metab 29:390–395. https://doi.org/10.1007/s00774-011-0273-9

    Article  PubMed  PubMed Central  Google Scholar 

  23. Gamer LW, Pregizer S, Gamer J, Feigenson M, Ionescu A, Li Q, Han L, Rosen V (2018) The Role of Bmp2 in the Maturation and Maintenance of the Murine Knee Joint (in eng). J Bone Miner Res: Off J Am Soc Bone Miner Res 33:1708–1717. https://doi.org/10.1002/jbmr.3441

    Article  CAS  Google Scholar 

  24. Yoshida CA, Yamamoto H, Fujita T, Furuichi T, Ito K, Inoue K, Yamana K, Zanma A, Takada K, Ito Y, Komori T (2004) Runx2 and Runx3 are essential for chondrocyte maturation, and Runx2 regulates limb growth through induction of Indian hedgehog (in eng). Genes Dev 18:952–963. https://doi.org/10.1101/gad.1174704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Komori T (2020) Molecular Processes in Chondrocyte Biology (in eng). Int J Mol Sci. https://doi.org/10.3390/ijms21114161

    Article  PubMed  PubMed Central  Google Scholar 

  26. van Beuningen HM, Glansbeek HL, van der Kraan PM, van den Berg WB (1998) Differential effects of local application of BMP-2 or TGF-beta 1 on both articular cartilage composition and osteophyte formation (in eng). Osteoarthritis Cartilage 6:306–317. https://doi.org/10.1053/joca.1998.0129

    Article  PubMed  Google Scholar 

  27. Zhou Y, Wang T, Hamilton JL, Chen D (2017) Wnt/β-catenin signaling in osteoarthritis and in other forms of arthritis (in eng). Curr Rheumatol Rep 19:53. https://doi.org/10.1007/s11926-017-0679-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Plotz B, Bomfim F, Sohail MA, Samuels J (2021) Current epidemiology and risk factors for the development of hand osteoarthritis (in eng). Curr Rheumatol Rep 23:61. https://doi.org/10.1007/s11926-021-01025-7

    Article  CAS  PubMed  Google Scholar 

  29. Wehmeyer C, Frank S, Beckmann D, Böttcher M, Cromme C, König U, Fennen M, Held A, Paruzel P, Hartmann C, Stratis A, Korb-Pap A, Kamradt T, Kramer I, van den Berg W, Kneissel M, Pap T, Dankbar B (2016) Sclerostin inhibition promotes TNF-dependent inflammatory joint destruction (in eng). Sci Transl Med 8:330ra35. https://doi.org/10.1126/scitranslmed.aac4351

    Article  CAS  PubMed  Google Scholar 

  30. Nakamura Y, Nawata M, Wakitani S (2005) Expression profiles and functional analyses of Wnt-related genes in human joint disorders (in eng). Am J Pathol 167:97–105. https://doi.org/10.1016/s0002-9440(10)62957-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dell’accio F, De Bari C, Eltawil NM, Vanhummelen P, Pitzalis C (2008) Identification of the molecular response of articular cartilage to injury, by microarray screening: Wnt-16 expression and signaling after injury and in osteoarthritis (in eng). Arthritis Rheum 58:1410–1421. https://doi.org/10.1002/art.23444

    Article  CAS  PubMed  Google Scholar 

  32. Papathanasiou I, Malizos KN, Tsezou A (2012) Bone morphogenetic protein-2-induced Wnt/β-catenin signaling pathway activation through enhanced low-density-lipoprotein receptor-related protein 5 catabolic activity contributes to hypertrophy in osteoarthritic chondrocytes (in eng). Arthritis Res Ther 14:R82. https://doi.org/10.1186/ar3805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Iwakura T, Inui A, Reddi AH (2013) Stimulation of superficial zone protein accumulation by hedgehog and Wnt signaling in surface zone bovine articular chondrocytes (in eng). Arthritis Rheum 65:408–417. https://doi.org/10.1002/art.37768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kitagaki J, Iwamoto M, Liu JG, Tamamura Y, Pacifci M, Enomoto-Iwamoto M (2003) Activation of beta-catenin-LEF/TCF signal pathway in chondrocytes stimulates ectopic endochondral ossification (in eng). Osteoarthritis Cartilage 11:36–43. https://doi.org/10.1053/joca.2002.0863

    Article  CAS  PubMed  Google Scholar 

  35. Saito T, Fukai A, Mabuchi A, Ikeda T, Yano F, Ohba S, Nishida N, Akune T, Yoshimura N, Nakagawa T, Nakamura K, Tokunaga K, Chung UI, Kawaguchi H (2010) Transcriptional regulation of endochondral ossification by HIF-2alpha during skeletal growth and osteoarthritis development (in eng). Nat Med 16:678–686. https://doi.org/10.1038/nm.2146

    Article  CAS  PubMed  Google Scholar 

  36. Nishimura R, Hata K, Nakamura E, Murakami T, Takahata Y (2018) Transcriptional network systems in cartilage development and disease (in eng). Histochem Cell Biol 149:353–363. https://doi.org/10.1007/s00418-017-1628-7

    Article  CAS  PubMed  Google Scholar 

  37. Yasuhara R, Ohta Y, Yuasa T, Kondo N, Hoang T, Addya S, Fortina P, Pacifici M, Iwamoto M, Enomoto-Iwamoto M (2011) Roles of β-catenin signaling in phenotypic expression and proliferation of articular cartilage superficial zone cells (in eng). Lab Invest J Tech Methods Pathol 91:1739–52. https://doi.org/10.1038/labinvest.2011.144

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Addgene for providing pCMV-VSV-G, pRSV-Rev, pMDLg/pRRE and XE143 sFRP-3-CS2+ plasmids.

Funding

This work was supported by Japan Society for the Promotion of Science grants-in-aid for scientific research (16H06393, 20K20475 and 21H04841).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hiroko Yagi or Riko Nishimura.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 16 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yagi, H., Takahata, Y., Murakami, T. et al. Transcriptional regulation of FRZB in chondrocytes by Osterix and Msx2. J Bone Miner Metab 40, 723–734 (2022). https://doi.org/10.1007/s00774-022-01345-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-022-01345-3

Keywords

Navigation