Skip to main content
Log in

Role of plasminogen activator inhibitor-1 in glucocorticoid-induced muscle change in mice

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

We recently revealed that plasminogen activator inhibitor-1 (PAI-1), a serine protease inhibitor, is involved in diabetes, osteoporosis and muscle wasting induced by glucocorticoid (GC) treatment in mice. In the present study, we investigated the detailed mechanisms by which GC induces muscle wasting through PAI-1 in vivo and in vitro. PAI-1 deficiency suppressed the mRNA levels of atrogin1 and muscle RING-Finger Protein 1 (MuRF1), ubiquitin ligases leading to muscle degradation, elevated by GC treatment in the gastrocnemius muscle of mice. In vitro study revealed that active PAI-1 treatment augmented the increase in atrogin1 mRNA levels enhanced by dexamethasone (Dex) in mouse myoblastic C2C12 cells. Moreover, a reduction in endogenous PAI-1 level by siRNA suppressed the mRNA levels of atrogin1 and MuRF1 enhanced by Dex in C2C12 cells. In contrast, a reduction in endogenous PAI-1 levels and active PAI-1 did not affect the phosphorylations of Akt and p70S6 kinase nor myogenic differentiation with or without Dex in C2C12 cells. In addition, PAI-1 deficiency blunted IGF-1 mRNA levels decreased by GC treatment in the gastrocnemius muscle of mice, although neither active PAI-1 nor a reduction in endogenous PAI-1 levels affected the levels of IGF-1 mRNA in C2C12 cells in the presence of Dex. In conclusion, our data suggest that paracrine PAI-1 is involved in GC-induced muscle wasting through the enhancement of muscle degradation in mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Rhen T, Cidlowski JA (2005) Antiinflammatory action of glucocorticoids—new mechanisms for old drugs. N Engl J Med 353:1711–1723

    Article  CAS  Google Scholar 

  2. Strehl C, Buttgereit F (2013) Optimized glucocorticoid therapy: teaching old drugs new tricks. Mol Cell Endocrinol 380:32–40

    Article  CAS  Google Scholar 

  3. van Raalte DH, Ouwens DM, Diamant M (2009) Novel insights into glucocorticoid-mediated diabetogenic effects: towards expansion of therapeutic options? Eur J Clin Invest 39:81–93

    Article  Google Scholar 

  4. Kuo T, Harris CA, Wang JC (2013) Metabolic functions of glucocorticoid receptor in skeletal muscle. Mol Cell Endocrinol 380:79–88

    Article  CAS  Google Scholar 

  5. Henneicke H, Gasparini SJ, Brennan-Speranza TC, Zhou H, Seibel MJ (2014) Glucocorticoids and bone: local effects and systemic implications. Trends Endocrinol Metab 25:197–211

    Article  CAS  Google Scholar 

  6. Hasselgren PO, Alamdari N, Aversa Z, Gonnella P, Smith IJ, Tizio S (2010) Corticosteroids and muscle wasting: role of transcription factors, nuclear cofactors, and hyperacetylation. Curr Opin Clin Nutr Metab Care 13:423–428

    Article  CAS  Google Scholar 

  7. Braun TP, Marks DL (2015) The regulation of muscle mass by endogenous glucocorticoids. Front Physiol 6:12

    Article  Google Scholar 

  8. Kawao N, Kaji H (2015) Interactions between muscle tissues and bone metabolism. J Cell Biochem 116:687–695

    Article  CAS  Google Scholar 

  9. Kaji H (2016) Effects of myokines on bone. BoneKEy Rep 5:826

    Article  Google Scholar 

  10. Waddell DS, Baehr LM, van den Brandt J, Johnsen SA, Reichardt HM, Furlow JD, Bodine SC (2008) The glucocorticoid receptor and FOXO1 synergistically activate the skeletal muscle atrophy-associated MuRF1 gene. Am J Physiol Endocrinol Metab 295:E785–E797

    Article  CAS  Google Scholar 

  11. Castillero E, Alamdari N, Lecker SH, Hasselgren PO (2013) Suppression of Atrogin1 and MuRF1 prevents dexamethasone-induced atrophy of cultured myotubes. Metabolism 62:1495–1502

    Article  CAS  Google Scholar 

  12. Goodman CA, Mayhew DL, Hornberger TA (2011) Recent progress toward understanding the molecular mechanisms that regulate skeletal muscle mass. Cell Signal 23:1896–1906

    Article  CAS  Google Scholar 

  13. Wang H, Kubica N, Ellisen LW, Jefferson LS, Kimball SR (2006) Dexamethasone represses signaling through the mammalian target of rapamycin in muscle cells by enhancing expression of REDD1. J Biol Chem 281:39128–39134

    Article  CAS  Google Scholar 

  14. Wu Y, Zhao W, Zhao J, Zhang Y, Qin W, Pan J, Bauman WA, Blitzer RD, Cardozo C (2010) REDD1 is a major target of testosterone action in preventing dexamethasone-induced muscle loss. Endocrinology 151:1050–1059

    Article  CAS  Google Scholar 

  15. Dong Y, Pan JS, Zhang L (2013) Myostatin suppression of Akirin1 mediates glucocorticoid-induced satellite cell dysfunction. PLoS One 8:e58554

    Article  CAS  Google Scholar 

  16. Hoekstra T, Geleijnse JM, Schouten EG, Kluft C (2004) Plasminogen activator inhibitor-type 1: its plasma determinants and relation with cardiovascular risk. Thromb Haemost 91:861–872

    Article  CAS  Google Scholar 

  17. Ma LJ, Mao SL, Taylor KL, Kanjanabuch T, Guan Y, Zhang Y, Brown NJ, Swift LL, McGuinness OP, Wasserman DH, Vaughan DE, Fogo AB (2004) Prevention of obesity and insulin resistance in mice lacking plasminogen activator inhibitor 1. Diabetes 53:336–346

    Article  CAS  Google Scholar 

  18. Mathieu P, Lemieux I, Despres JP (2010) Obesity, inflammation, and cardiovascular risk. Clin Pharmacol Ther 87:407–416

    Article  CAS  Google Scholar 

  19. Tamura Y, Kawao N, Okada K, Yano M, Okumoto K, Matsuo O, Kaji H (2013) Plasminogen activator inhibitor-1 is involved in streptozotocin-induced bone loss in female mice. Diabetes 62:3170–3179

    Article  CAS  Google Scholar 

  20. Kaji H (2016) Adipose tissue-derived plasminogen activator inhibitor-1 function and regulation. Compr Physiol 6:1873–1896

    Article  Google Scholar 

  21. Tamura Y, Kawao N, Yano M, Okada K, Okumoto K, Chiba Y, Matsuo O, Kaji H (2015) Role of plasminogen activator inhibitor-1 in glucocorticoid-induced diabetes and osteopenia in mice. Diabetes 64:2194–2206

    Article  CAS  Google Scholar 

  22. Carmeliet P, Moons L, Lijnen R, Janssens S, Lupu F, Collen D, Gerard RD (1997) Inhibitory role of plasminogen activator inhibitor-1 in arterial wound healing and neointima formation: a gene targeting and gene transfer study in mice. Circulation 96:3180–3191

    Article  CAS  Google Scholar 

  23. Tanaka K, Kanazawa I, Yamaguchi T, Yano S, Kaji H, Sugimoto T (2014) Active vitamin D possessed beneficial effects on the interaction between muscle and bone. Biochem Biophys Res Commun 450:482–487

    Article  CAS  Google Scholar 

  24. Kawao N, Tamura Y, Okumoto K, Yano M, Okada K, Matsuo O, Kaji H (2014) Tissue-type plasminogen activator deficiency delays bone repair: roles of osteoblastic proliferation and vascular endothelial growth factor. Am J Physiol Endocrinol Metab 307:E278–E288

    Article  CAS  Google Scholar 

  25. Lecker SH, Solomon V, Mitch WE, Goldberg AL (1999) Muscle protein breakdown and the critical role of the ubiquitin–proteasome pathway in normal and disease states. J Nutr 129:227S–237S

    Article  CAS  Google Scholar 

  26. Kandarian SC, Jackman RW (2006) Intracellular signaling during skeletal muscle atrophy. Muscle Nerve 33:155–165

    Article  CAS  Google Scholar 

  27. Bodine SC, Latres E, Baumhueter S, Lai VK, Nunez L, Clarke BA, Poueymirou WT, Panaro FJ, Na E, Dharmarajan K, Pan ZQ, Valenzuela DM, DeChiara TM, Stitt TN, Yancopoulos GD, Glass DJ (2001) Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 294:1704–1708

    Article  CAS  Google Scholar 

  28. Bodine SC, Baehr LM (2014) Skeletal muscle atrophy and the E3 ubiquitin ligases MuRF1 and MAFbx/Atrogin1. Am J Physiol Endocrinol Metab 307:E469–E484

    Article  CAS  Google Scholar 

  29. Sandri M, Sandri C, Gilbert A, Skurk C, Calabria E, Picard A, Walsh K, Schiaffino S, Lecker SH, Goldberg AL (2004) Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell 117:399–41229

    Article  CAS  Google Scholar 

  30. Baehr LM, Furlow JD, Bodine SC (2011) Muscle sparing in muscle RING finger 1 null mice: response to synthetic glucocorticoids. J Physiol 589:4759–4776

    Article  CAS  Google Scholar 

  31. Barlovatz-Meimon G, Frisdal E, Hantai D, Angles-Cano E, Gautron J (1990) Slow and fast rat skeletal muscles differ in their plasminogen activator activities. Eur J Cell Biol 52:157–162

    CAS  PubMed  Google Scholar 

  32. Quax PH, Frisdal E, Pedersen N, Bonavaud S, Thibert P, Martelly I, Verheijen JH, Blasi F, Barlovatz-Meimon G (1992) Modulation of activities and RNA level of the components of the plasminogen activation system during fusion of human myogenic satellite cells in vitro. Dev Biol 151:166–175

    Article  CAS  Google Scholar 

  33. Suelves M, Lopez-Alemany R, Lluis F, Aniorte G, Serrano E, Parra M, Carmeliet P, Munoz-Canoves P (2002) Plasmin activity is required for myogenesis in vitro and skeletal muscle regeneration in vivo. Blood 99:2835–2844

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The study was supported by grants-in-aid for scientific research 16K10924 and 15K08220 from the Ministry of Education, Culture, Sports, Science and Technology of Japan (to Y.T. and H.K., respectively) and grants from the Takeda Science Foundation and the Osaka Medical Research Foundation for Intractable Diseases.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Kaji.

Ethics declarations

Conflict of interest

All authors have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tamura, Y., Kawao, N., Shimoide, T. et al. Role of plasminogen activator inhibitor-1 in glucocorticoid-induced muscle change in mice. J Bone Miner Metab 36, 148–156 (2018). https://doi.org/10.1007/s00774-017-0825-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-017-0825-8

Keywords