Skip to main content

Advertisement

Log in

GREB1 genetic variants are associated with bone mineral density in Caucasians

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Gaining an understanding of factors contributing to bone quality is key to the development of effective preventative treatments for osteoporosis and reduction in osteoporotic fractures. Oestrogen is a strong regulator of bone remodelling which maintains skeletal structural integrity. The growth regulation by oestrogen in breast cancer 1 (GREB1) gene, with an as yet undefined function, is an early response gene in the oestrogen-regulated pathway. Suggestive evidence of linkage with bone mineral density (BMD) variation has been reported with D2S168, located telomeric of GREB1. The aim of this study was to determine if genetic variation within GREB1 was associated with BMD variation at two sites with high fracture rates—the lumbar spine (LS) and the femoral neck (FN). Informative GREB1 single-nucleotide polymorphisms (SNPs) (n = 12) were selected for genotyping and tested for association in a family-based dataset (n = 508 individuals from 229 families). Significantly associated SNPs were tested further in a postmenopausal dataset from the same geographic region (n = 477 individuals). One intronic SNP, rs5020877, was significantly associated with LS and FN BMD in the family-based dataset (P ≤ 0.005). The association was not observed in the postmenopausal dataset (P > 0.017); however, rs10929757 was significantly associated with FN BMD (P = 0.006). Markers, rs5020877 and rs10929757, were constituent SNPs in one GREB1 linkage disequilibrium block, although not historically correlated (r 2 = 0.07). Our findings suggest that GREB1 is a novel gene target for osteoporosis genetics and needs to be investigated further.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Seeman E, Delmas PD (2006) Bone quality—the material and structural basis of bone strength and fragility. N Engl J Med 354:2250–2261. doi:10.1056/NEJMra053077

    Article  CAS  PubMed  Google Scholar 

  2. Karasik D, Ferrari SL (2008) Contribution of gender-specific genetic factors to osteoporosis risk. Ann Hum Genet 72:696–714. doi:10.1111/j.1469-1809.2008.00447.x

    Article  CAS  PubMed  Google Scholar 

  3. Smith DM, Nance WE, Kang KW, Christian JC, Johnston CC Jr (1973) Genetic factors in determining bone mass. J Clin Investig 52:2800–2808. doi:10.1172/JCI107476

    Article  CAS  PubMed  Google Scholar 

  4. Richards JB, Kavvoura FK, Rivadeneira F, Styrkársdóttir U, Estrada K et al (2009) Collaborative meta-analysis: associations of 150 candidate genes with osteoporosis and osteoporotic fracture. Ann Intern Med 151:528–537. doi:10.7326/0003-4819-151-8-200910200-00006

    Article  PubMed  PubMed Central  Google Scholar 

  5. Rivadeneira F, Styrkarsdottir U, Estrada K, Halldorsson BV, Hsu YH et al (2009) Twenty bone-mineral-density loci identified by large-scale meta-analysis of genome-wide association studies. Nat Genet 41:1199–1206. doi:10.1038/ng.446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wynne F, Drummond FJ, Daly M, Brown M, Shanahan F, Molloy MG, Quane KA (2003) Suggestive linkage of 2p22-25 and 11q12-13 with low bone mineral density at the lumbar spine in the Irish population. Calcif Tissue Int 72:651–658

    Article  CAS  Google Scholar 

  7. Rae JM, Johnson MD, Cordero KE, Scheys JO, Larios JM, Gottardis MM, Pienta KJ, Lippman ME (2006) GREB1 is a novel androgen-regulated gene required for prostate cancer growth. Prostate 66:886–894. doi:10.1002/pros.20403

    Article  CAS  PubMed  Google Scholar 

  8. Ghosh MG, Thompson DA, Weigel RJ (2000) PDZK1 and GREB1 are estrogen-regulated genes expressed in hormone-responsive breast cancer. Cancer Res 60:6367–6375

    CAS  PubMed  Google Scholar 

  9. Laviolette LA, Hodgkinson KM, Minhas N, Perez-Iratxeta C, Vanderhyden BC (2014) 17beta-estradiol upregulates GREB1 and accelerates ovarian tumor progression in vivo. Int J Cancer 135:1072–1084. doi:10.1002/ijc.28741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Liu T, Gao Y, Sakamoto K, Minamizato T, Furukawa K, Tsukazaki T, Shibata Y, Bessho K, Komori T, Yamaguchi A (2007) BMP-2 promotes differentiation of osteoblasts and chondroblasts in Runx2-deficient cell lines. J Cell Physiol 211:728–735. doi:10.1002/jcp.20988

    Article  CAS  PubMed  Google Scholar 

  11. Mohammed H, D’Santos C, Serandour AA, Ali HR, Brown GD, Atkins A, Rueda OM, Holmes KA, Theodorou V, Robinson JL, Zwart W, Saadi A, Ross-Innes CS, Chin SF, Menon S, Stingl J, Palmieri C, Caldas C, Carroll JS (2013) Endogenous purification reveals GREB1 as a key estrogen receptor regulatory factor. Cell Rep 3:342–349. doi:10.1016/j.celrep.2013.01.010

    Article  CAS  PubMed  Google Scholar 

  12. Drummond FJ, Annis P, O’Sullivan K, Wynne F, Daly M, Shanahan F, Quane KA, Molloy MG (2003) Screening for asymptomatic celiac disease among patients referred for bone densitometry measurement. Bone 33:970–974

    Article  CAS  Google Scholar 

  13. Drummond FJ, Mackrill JJ, O’Sullivan K, Daly M, Shanahan F, Molloy MG (2006) CD38 is associated with premenopausal and postmenopausal bone mineral density and postmenopausal bone loss. J Bone Miner Metab 24:28–35

    Article  CAS  Google Scholar 

  14. The International HapMap Consortium (2007) A second generation human haplotype map of over 3.1 million SNPs

  15. Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21:263–265

    Article  CAS  Google Scholar 

  16. Wigginton JE, Abecasis GR (2005) PEDSTATS: descriptive statistics, graphics and quality assessment for gene mapping data. Bioinformatics 21:3445–3447

    Article  CAS  Google Scholar 

  17. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, Sham PC (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575

    Article  CAS  Google Scholar 

  18. Purcell S, Cherny SS, Sham PC (2003) Genetic power calculator: design of linkage and association genetic mapping studies of complex traits. Bioinformatics 19:149–150

    Article  CAS  Google Scholar 

  19. Gauderman W, Morrison J (2006) QUANTO 1.1: a computer program for power and sample size calculations for genetic-epidemiology studies

  20. Abecasis GR, Cardon LR, Cookson WO (2000) A general test of association for quantitative traits in nuclear families. Am J Hum Genet 66:279–292

    Article  CAS  Google Scholar 

  21. Yuan H-Y, Chiou J-J, Tseng W-H, Liu C-H, Liu C-K, Lin Y-J, Wang H-H, Yao A, Chen Y-T, Hsu C-N (2006) FASTSNP: an always up-to-date and extendable service for SNP function analysis and prioritization. Nucleic Acids Res 34:W635–W641. doi:10.1093/nar/gkl236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nyholt DR (2004) A simple correction for multiple testing for single-nucleotide polymorphisms in linkage disequilibrium with each other. Am J Hum Genet 74:765–769

    Article  CAS  Google Scholar 

  23. Little J, Higgins JP, Ioannidis JP, Moher D, Gagnon F et al (2009) STrengthening the REporting of Genetic Association studies (STREGA): an extension of the STROBE statement. Ann Intern Med 150:206–215

    Article  Google Scholar 

  24. Kawasaki H, Eckner R, Yao TP, Taira K, Chiu R, Livingston DM, Yokoyama KK (1998) Distinct roles of the co-activators p300 and CBP in retinoic-acid-induced F9-cell differentiation. Nature 393:284–289. doi:10.1038/30538

    Article  CAS  PubMed  Google Scholar 

  25. Yao TP, Oh SP, Fuchs M, Zhou ND, Ch’ng LE, Newsome D, Bronson RT, Li E, Livingston DM, Eckner R (1998) Gene dosage-dependent embryonic development and proliferation defects in mice lacking the transcriptional integrator p300. Cell 93:361–372. doi:10.1016/S0092-8674(00)81165-4

    Article  CAS  PubMed  Google Scholar 

  26. Gayther SA, Batley SJ, Linger L, Bannister A, Thorpe K, Chin S-F, Daigo Y, Russell P, Wilson A, Sowter HM, Delhanty JDA, Ponder BAJ, Kouzarides T, Caldas C (2000) Mutations truncating the EP300 acetylase in human cancers. Nat Genet 24:300–303

    Article  CAS  Google Scholar 

  27. Manning ET, Ikehara T, Ito T, Kadonaga JT, Kraus WL (2001) p300 forms a stable, template-committed complex with chromatin: role for the bromodomain. Mol Cell Biol 21:3876–3887. doi:10.1128/mcb.21.12.3876-3887.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hanstein B, Eckner R, DiRenzo J, Halachmi S, Liu H, Searcy B, Kurokawa R, Brown M (1996) p300 is a component of an estrogen receptor coactivator complex. Proc Natl Acad Sci USA 93:11540–11545

    Article  CAS  Google Scholar 

  29. Kraus WL, Kadonaga JT (1998) p300 and estrogen receptor cooperatively activate transcription via differential enhancement of initiation and reinitiation. Genes Dev 12:331–342

    Article  CAS  Google Scholar 

  30. Wang EA, Rosen V, D’Alessandro JS, Bauduy M, Cordes P, Harada T, Israel DI, Hewick RM, Kerns KM, LaPan P et al (1990) Recombinant human bone morphogenetic protein induces bone formation. Proc Natl Acad Sci USA 87:2220–2224

    Article  CAS  Google Scholar 

  31. Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G (1997) Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell 89:747–754. doi:10.1016/S0092-8674(00)80257-3

    Article  CAS  Google Scholar 

  32. Chand AL, Wijayakumara DD, Knower KC, Herridge KA, Howard TL, Lazarus KA, Clyne CD (2012) The orphan nuclear receptor LRH-1 and ERalpha activate GREB1 expression to induce breast cancer cell proliferation. PLoS One 7:e31593. doi:10.1371/journal.pone.0031593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Riancho JA, Liu Y, Sainz J, Garcia-Perez MA, Olmos JM, Bolado-Carrancio A, Valero C, Perez-Lopez J, Cano A, Yang T, Sanudo C, Deng HW, Rodriguez-Rey JC (2012) Nuclear receptor NR5A2 and bone: gene expression and association with bone mineral density. Eur J Endocrinol 166:69–75. doi:10.1530/EJE-11-0571

    Article  CAS  PubMed  Google Scholar 

  34. Hill EW, Jobling MA, Bradley DG (2000) Y-chromosome variation and Irish origins. Nature 404:351–352

    Article  CAS  Google Scholar 

  35. Cronin S, Berger S, Ding J, Schymick JC, Washecka N, Hernandez DG, Greenway MJ, Bradley DG, Traynor BJ, Hardiman O (2008) A genome-wide association study of sporadic ALS in a homogenous Irish population. Hum Mol Genet 17:768–774. doi:10.1093/hmg/ddm361

    Article  CAS  PubMed  Google Scholar 

  36. McEvoy BP, Montgomery GW, McRae AF, Ripatti S, Perola M et al (2009) Geographical structure and differential natural selection among North European populations. Genome Res 19:804–814. doi:10.1101/gr.083394.108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Button KS, Ioannidis JP, Mokrysz C, Nosek BA, Flint J, Robinson ES, Munafo MR (2013) Power failure: why small sample size undermines the reliability of neuroscience. Nat Rev Neurosci 14:365–376. doi:10.1038/nrn3475

    Article  CAS  PubMed  Google Scholar 

  38. Koller DL, Ichikawa S, Johnson ML, Lai D, Xuei X, Edenberg HJ, Conneally PM, Hui SL, Johnston CC, Peacock M, Foroud T, Econs MJ (2005) Contribution of the LRP5 gene to normal variation in peak BMD in women. J Bone Miner Res 20:75–80. doi:10.1359/JBMR.041019

    Article  CAS  PubMed  Google Scholar 

  39. Pettersson U, Albagha OM, Mirolo M, Taranta A, Frattini A, McGuigan FE, Vezzoni P, Teti A, van Hul W, Reid DM, Villa A, Ralston SH (2005) Polymorphisms of the CLCN7 gene are associated with BMD in women. J Bone Miner Res 20:1960–1967. doi:10.1359/JBMR.050717

    Article  CAS  PubMed  Google Scholar 

  40. Jurado S, Nogués X, Agueda L, Garcia-Giralt N, Urreizti R, Yoskovitz G, Pérez-Edo L, Saló G, Carreras R, Mellibovsky L, Balcells S, Grinberg D, Díez-Pérez A (2010) Polymorphisms and haplotypes across the osteoprotegerin gene associated with bone mineral density and osteoporotic fractures. Osteoporos Int 21:287−296

    Article  CAS  Google Scholar 

  41. Xiong DH, Liu XG, Guo YF, Tan LJ, Wang L et al (2009) Genome-wide association and follow-up replication studies identified ADAMTS18 and TGFBR3 as bone mass candidate genes in different ethnic groups. Am J Hum Genet 84:388–398. doi:10.1016/j.ajhg.2009.01.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. He JW, Yue H, Hu WW, Hu YQ, Zhang ZL (2011) Contribution of the sclerostin domain-containing protein 1 (SOSTDC1) gene to normal variation of peak bone mineral density in Chinese women and men. J Bone Miner Metab 29:571–581. doi:10.1007/s00774-010-0253-5

    Article  CAS  PubMed  Google Scholar 

  43. Lau HH, Ng MY, Cheung WM, Paterson AD, Sham PC, Luk KD, Chan V, Kung AW (2006) Assessment of linkage and association of 13 genetic loci with bone mineral density. J Bone Miner Metab 24:226–234

    Article  CAS  Google Scholar 

  44. Kathiresan S, Newton-Cheh C, Gerszten RE (2004) On the interpretation of genetic association studies. Eur Heart J 25:1378–1381. doi:10.1016/j.ehj.2004.06.035

    Article  PubMed  Google Scholar 

  45. Kazma R, Bailey JN (2011) Population-based and family-based designs to analyze rare variants in complex diseases. Genet Epidemiol 35:S41–S47. doi:10.1002/gepi.20648

    Article  PubMed  PubMed Central  Google Scholar 

  46. Hopper JL, Bishop DT, Easton DF (2005) Population-based family studies in genetic epidemiology. Lancet 366:1397–1406. doi:10.1016/S0140-6736(05)67570-8

    Article  PubMed  Google Scholar 

  47. Hodgkinson KM, Vanderhyden BC (2014) Consideration of GREB1 as a potential therapeutic target for hormone-responsive or endocrine-resistant cancers. Expert Opin Ther Targets 18:1065–1076. doi:10.1517/14728222.2014.936382

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Ms. M. Twohy and Ms. J. Foley who helped in the recruitment and bleeding of individuals and who performed all the DXA scans for this study. This research was funded by the Irish Centre for Arthritis Research and Education (ICARE). There was no involvement by ICARE in the study design, performance or results interpretation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin G. Hegarty.

Ethics declarations

Conflict of interest

None.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hegarty, K.G., Drummond, F.J., Daly, M. et al. GREB1 genetic variants are associated with bone mineral density in Caucasians. J Bone Miner Metab 36, 189–199 (2018). https://doi.org/10.1007/s00774-017-0823-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-017-0823-x

Keywords

Navigation