Skip to main content

Advertisement

Log in

Impaired osteogenic differentiation and enhanced cellular receptor of advanced glycation end products sensitivity in patients with type 2 diabetes

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Preclinical studies have demonstrated impaired osteoblast differentiation in type 2 diabetes (T2DM), which is related to skeletal accumulation of advanced glycation end products (AGEs). However, the role of AGE in osteoblast differentiation in patients with T2DM is unclear. This cross-sectional study was performed to investigate osteoblast differentiation and its association with serum pentosidine and soluble receptor of AGEs (sRAGE). Twenty-seven patients with T2DM and 15 age-matched controls were included to measure sRAGE and osteogenic differentiation in mononuclear cells derived from peripheral blood. The mononuclear cells isolated from patients with T2DM showed a significantly lower rate of osteogenic differentiation (7.4% vs 86.7%, p < 0.0001) with a lower level of ALPL, COL1A1, and BGLAP expression than those of controls by 11-, 44-, and 15-fold respectively, together with nonvisualized mineralization by alizarin red S staining. The levels of pentosidine and sRAGE were comparable in both groups. AGER expression was significantly higher in the T2DM group. BAX expression was also significantly higher in the T2DM group, and showed a strong correlation with AGER expression (r = 0.86, p < 0.0001). Fasting plasma glucose (FPG) level, AGER expression, and BAX expression showed a strong correlation with osteogenic differentiation defects on univariate analysis. However, only FPG showed a correlation with this defect in a multivariate analysis. In conclusion, patients with T2DM showed impairment of osteoblast differentiation, and FPG was an independent risk factor for this impairment. Moreover, T2DM showed a higher cellular sensitivity for activation of receptor of AGEs and higher cellular apoptosis, which may contribute to the defect in osteoblast differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bonds DE, Larson JC, Schwartz AV, Strotmeyer ES, Robbins J, Rodriguez BL, Johnson KC, Margolis KL (2006) Risk of fracture in women with type 2 diabetes: the Women’s Health Initiative Observational Study. J Clin Endocrinol Metab 91:3404–3410

    Article  CAS  PubMed  Google Scholar 

  2. Janghorbani M, Van Dam RM, Willett WC, Hu FB (2007) Systematic review of type 1 and type 2 diabetes mellitus and risk of fracture. Am J Epidemiol 166:495–505

    Article  PubMed  Google Scholar 

  3. Vestergaard P (2007) Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes—a meta-analysis. Osteoporos Int 18:427–444

    Article  CAS  PubMed  Google Scholar 

  4. Yamamoto M, Yamaguchi T, Yamauchi M, Kaji H, Sugimoto T (2007) Bone mineral density is not sensitive enough to assess the risk of vertebral fractures in type 2 diabetic women. Calcif Tissue Int 80:353–358

    Article  CAS  PubMed  Google Scholar 

  5. Melton LJ 3rd, Leibson CL, Achenbach SJ, Therneau TM, Khosla S (2008) Fracture risk in type 2 diabetes: update of a population-based study. J Bone Miner Res 23:1334–1342

    Article  PubMed  PubMed Central  Google Scholar 

  6. Verhaeghe J, Visser WJ, Einhorn TA, Bouillon R (1990) Osteoporosis and diabetes: lessons from the diabetic BB rat. Horm Res 34:245–258

    Article  CAS  PubMed  Google Scholar 

  7. Verhaeghe J, van Herck E, Visser WJ, Suiker AM, Thomasset M, Einhorn TA, Faierman E, Bouillon R (1990) Bone and mineral metabolism in BB rats with long-term diabetes. Decreased bone turnover and osteoporosis. Diabetes 39:477–482

    Article  CAS  PubMed  Google Scholar 

  8. Leite Duarte ME, da Silva RD (1996) Histomorphometric analysis of the bone tissue in patients with non-insulin-dependent diabetes (DMNID). Rev Hosp Clin Fac Med Sao Paulo 51:7–11

    CAS  PubMed  Google Scholar 

  9. Tomasek JJ, Meyers SW, Basinger JB, Green DT, Shew RL (1994) Diabetic and age-related enhancement of collagen-linked fluorescence in cortical bones of rats. Life Sci 55:855–861

    Article  CAS  PubMed  Google Scholar 

  10. Odetti P, Rossi S, Monacelli F, Poggi A, Cirnigliaro M, Federici M, Federici A (2005) Advanced glycation end products and bone loss during aging. Ann N Y Acad Sci 1043:710–717

    Article  CAS  PubMed  Google Scholar 

  11. Hein G, Weiss C, Lehmann G, Niwa T, Stein G, Franke S (2006) Advanced glycation end product modification of bone proteins and bone remodelling: hypothesis and preliminary immunohistochemical findings. Ann Rheum Dis 65:101–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tang SY, Zeenath U, Vashishth D (2007) Effects of non-enzymatic glycation on cancellous bone fragility. Bone 40:1144–1151

    Article  CAS  PubMed  Google Scholar 

  13. Kume S, Kato S, Yamagishi S, Inagaki Y, Ueda S, Arima N, Okawa T, Kojiro M, Nagata K (2005) Advanced glycation end-products attenuate human mesenchymal stem cells and prevent cognate differentiation into adipose tissue, cartilage, and bone. J Bone Miner Res 20:1647–1658

    Article  CAS  PubMed  Google Scholar 

  14. Alikhani M, Alikhani Z, Boyd C, MacLellan CM, Raptis M, Liu R, Pischon N, Trackman PC, Gerstenfeld L, Graves DT (2007) Advanced glycation end products stimulate osteoblast apoptosis via the MAP kinase and cytosolic apoptotic pathways. Bone 40:345–353

    Article  CAS  PubMed  Google Scholar 

  15. Franke S, Siggelkow H, Wolf G, Hein G (2007) Advanced glycation endproducts influence the mRNA expression of RAGE, RANKL and various osteoblastic genes in human osteoblasts. Arch Physiol Biochem 113:154–161

    Article  CAS  PubMed  Google Scholar 

  16. Sanguineti R, Storace D, Monacelli F, Federici A, Odetti P (2008) Pentosidine effects on human osteoblasts in vitro. Ann N Y Acad Sci 1126:166–172

    Article  CAS  PubMed  Google Scholar 

  17. Stolzing A, Sellers D, Llewelyn O, Scutt A (2010) Diabetes induced changes in rat mesenchymal stem cells. Cells Tissues Organs 191:453–465

    Article  CAS  PubMed  Google Scholar 

  18. Notsu M, Yamaguchi T, Okazaki K, Tanaka K, Ogawa N, Kanazawa I, Sugimoto T (2014) Glycation end product 3 (AGE3) suppresses the mineralization of mouse stromal ST2 cells and human mesenchymal stem cells by increasing TGF-β expression and secretion. Endocrinology 155:2402–2410

    Article  PubMed  Google Scholar 

  19. Singh R, Barden A, Mori T, Beilin L (2001) Advanced glycation end-products: a review. Diabetologia 44:129–146

    Article  CAS  PubMed  Google Scholar 

  20. Ulrich P, Cerami A (2001) Protein glycation, diabetes and aging. Recent Prog Horm Res 56:1–21

    Article  CAS  PubMed  Google Scholar 

  21. McCance DR, Dyer DG, Dunn JA, Bailie KE, Thorpe SR, Baynes JW, Lyons TJ (1993) Millard reaction products and their relation to complications in insulin-dependent diabetes mellitus. J Clin Invest 91:2470–2478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Furth AJ (1997) Glycated proteins in diabetes. Br J Biomed Sci 54:192–200

    CAS  PubMed  Google Scholar 

  23. Saito M, Fujii K, Mori Y, Marumo K (2006) Role of collagen enzymatic and glycation induced cross-links as a determinant of bone quality in spontaneously diabetic WBN/Kob rats. Osteoporos Int 17:1514–1523

    Article  CAS  PubMed  Google Scholar 

  24. Yamamoto M, Yamaguchi T, Yamauchi M, Yano S, Sugimoto T (2008) Serum pentosidine levels are positively associated with the presence of vertebral fractures in postmenopausal women with type 2 diabetes. J Clin Endocrinol Metab 93:1013–1019

    Article  CAS  PubMed  Google Scholar 

  25. Schwartz AV, Garnero P, Hillier TA, Sellmeyer DE, Strotmeyer ES, Feingold KR, Resnick HE, Tylavsky FA, Black DM, Cummings SR, Harris TB, Bauer DC, Health, Aging, and Body Composition Study (2009) Pentosidine and increased fracture risk in older adults with type 2 diabetes. J Clin Endocrinol Metab 94:2380–2386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Neumann T, Lodes S, Kästner B, Franke S, Kiehntopf M, Lehmann T, Müller UA, Wolf G, Sämann A (2014) High serum pentosidine but not esRAGE is associated with prevalent fractures in type 1 diabetes independent of bone mineral density and glycaemic control. Osteoporos Int 25:1527–1533

    Article  CAS  PubMed  Google Scholar 

  27. Bierhaus A, Humpert PM, Stern DM, Arnold B, Nawroth PP (2005) Advanced glycation end product receptor-mediated cellular dysfunction. Ann N Y Acad Sci 1043:676–680

    Article  CAS  PubMed  Google Scholar 

  28. Bierhaus A, Humpert PM, Morcos M, Wendt T, Chavakis T, Arnold B, Stern DM, Nawroth PP (2005) Understanding RAGE, the receptor for advanced glycation end products. J Mol Med (Berl) 83:876–886

    Article  CAS  Google Scholar 

  29. Bierhaus A, Nawroth PP (2009) Multiple levels of regulation determine the role of the receptor for AGE (RAGE) as common soil in inflammation, immune responses and diabetes mellitus and its complications. Diabetologia 52:2251–2263

    Article  CAS  PubMed  Google Scholar 

  30. Mahali S, Raviprakash N, Raghavendra PB, Manna SK (2011) Advanced glycation end products (AGEs) induce apoptosis via a novel pathway: involvement of Ca2+ mediated by interleukin-8 protein. J Biol Chem 286:34903–34913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhou LL, Cao W, Xie C, Tian J, Zhou Z, Zhou Q, Zhu P, Li A, Liu Y, Miyata T, Hou FF, Nie J (2012) The receptor of advanced glycation end products plays a central role in advanced oxidation protein products-induced podocyte apoptosis. Kidney Int 82:759–770

    Article  CAS  PubMed  Google Scholar 

  32. Li G, Xu J, Li X (2012) Receptor for advanced glycation end products inhibits proliferation in osteoblast through suppression of Wnt, PI3K and ERK signaling. Biochem Biophys Res Commun 423:684–689

    Article  CAS  PubMed  Google Scholar 

  33. Garay-Sevilla ME, Regalado JC, Malacara JM, Nava LE, Wróbel-Zasada K, Castro-Rivas A, Wróbel K (2005) Advanced glycosylation end products in skin, serum, saliva and urine and its association with complications of patients with type 2 diabetes mellitus. J Endocrinol Invest 28:223–230

    Article  CAS  PubMed  Google Scholar 

  34. Kilhovd BK, Juutilainen A, Lehto S, Rönnemaa T, Torjesen PA, Hanssen KF, Laakso M (2007) Increased serum levels of advanced glycation endproducts predict total, cardiovascular and coronary mortality in women with type 2 diabetes: a population-based 18 year follow-up study. Diabetologia 50:1409–1417

    Article  CAS  PubMed  Google Scholar 

  35. Yamamoto Y, Kato I, Doi T, Yonekura H, Ohashi S, Takeuchi M, Watanabe T, Yamagishi S, Sakurai S, Takasawa S, Okamoto H, Yamamoto Y (2001) Development and prevention of advanced diabetic nephropathy in RAGE-overexpressing mice. J Clin Invest 108:261–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Soro-Paavonen A, Watson AM, Li J, Paavonen K, Koitka A, Calkin AC, Barit D, Coughlan MT, Drew BG, Lancaster GI, Thomas M, Forbes JM, Nawroth PP, Bierhaus A, Cooper ME, Jandeleit-Dahm KA (2008) Receptor for advanced glycation end products (RAGE) deficiency attenuates the development of atherosclerosis in diabetes. Diabetes 57:2461–2469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yonekura H, Yamamoto Y, Sakarai S, Petrova RG, Abedin MJ, Li H, Yasui K, Takeuchi M, Makita Z, Takasawa S, Okamoto H, Watanabe T, Yamamoto H (2003) Novel splice variants of the receptor for advanced glycation end-products expressed in human vascular endothelial cells and pericytes, and their putative roles in diabetes-induced vascular injury. Biochem J 307:1097–1109

    Article  Google Scholar 

  38. Flyvbjerg A, Denner L, Schrijvers BF, Tilton RG, Mogensen TH, Paludan SR, Rasch R (2004) Long-term renal effects of a neutralizing RAGE antibody in obese type 2 diabetic mice. Diabetes 53:166–172

    Article  CAS  PubMed  Google Scholar 

  39. Jensen LJ, Denner L, Schrijvers BF, Tilton RG, Rasch R, Flyvbjerg A (2006) Renal effects of a neutralising RAGE-antibody in long-term streptozotocin-diabetic mice. J Endocrinol 188:493–501

    Article  CAS  PubMed  Google Scholar 

  40. Park L, Raman KG, Lee KJ, Lu Y, Ferran LJ Jr, Chow WS, Stern D, Schmidt AM (1998) Suppression of accelerated diabetic atherosclerosis by the soluble receptor for advanced glycation endproducts. Nat Med 4:1025–1031

    Article  CAS  PubMed  Google Scholar 

  41. Shoji T, Koyama H, Morioka T, Tanaka S, Kizu A, Motoyama K, Mori K, Fukumoto S, Shioi A, Shimogaito N, Takeuchi M, Yamamoto Y, Yonekura H, Yamamoto H, Nishizawa Y (2006) Receptor for advanced glycation end products is involved in impaired angiogenic response in diabetes. Diabetes 55:2245–2255

    Article  CAS  PubMed  Google Scholar 

  42. Katakami N, Matsuhisa M, Kaneto H, Matsuoka TA, Sakamoto K, Nakatani Y, Ohtoshi K, Hayaishi-Okano R, Kosugi K, Hori M, Yamasaki Y (2005) Decreased endogenous secretory advanced glycation end product receptor in type 1 diabetic patients: its possible association with diabetic vascular complications. Diabetes Care 28:2706–2721

    Article  Google Scholar 

  43. Sakurai S, Yamamoto Y, Tamei H, Matsuki H, Obata K, Hui L, Miura J, Osawa M, Uchigata Y, Iwamoto Y, Watanabe T, Yonekura H, Yamamoto H (2006) Development of an ELISA for esRAGE and its application to type 1 diabetic patients. Diabetes Res Clin Pract 73:158–165

    Article  CAS  PubMed  Google Scholar 

  44. Koyama H, Shoji T, Yokoyama H, Motoyama K, Mori K, Fukumoto S, Emoto M, Shoji T, Tamei H, Matsuki H, Sakurai S, Yamamoto Y, Yonekura H, Watanabe T, Yamamoto H, Nishizawa Y (2005) Plasma level of endogenous secretory RAGE is associated with components of the metabolic syndrome and atherosclerosis. Arterioscler Thromb Vasc Biol 25:2587–2593

    Article  CAS  PubMed  Google Scholar 

  45. Challier M, Jacqueminet S, Benabdesselam O, Grimaldi A, Beaudeux JL (2005) Increased serum concentrations of soluble receptor for advanced glycation endproducts in patients with type 1 diabetes. Clin Chem 51:1749–1750

    Article  CAS  PubMed  Google Scholar 

  46. Tan KC, Shiu SW, Chow WS, Leng L, Bucala R, Betteridge DJ (2006) Association between serum levels of soluble receptor for advanced glycation end products and circulating advanced glycation end products in type 2 diabetes. Diabetologia 49:2756–2762

    Article  CAS  PubMed  Google Scholar 

  47. Nakamura K, Yamagishi S, Adachi H, Kurita-Nakamura Y, Matsui T, Yoshida T, Sato A, Imaizumi T (2007) Elevation of soluble form of receptor for advanced glycation end products (sRAGE) in diabetic subjects with coronary artery disease. Diabetes Metab Res Rev 23:368–371

    Article  CAS  PubMed  Google Scholar 

  48. Yamamoto M, Yamaguchi T, Yamauchi M, Sugimoto T (2009) Low serum level of the endogenous secretory receptor for advanced glycation end products (esRAGE) is a risk factor for prevalent vertebral fractures independent of bone mineral density in patients with type 2 diabetes. Diabetes Care 32:2263–2268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hass R, Kasper C, Böhm S, Jacobs R (2011) Different populations and sources of human mesenchymal stem cells (MSC): a comparison of adult and neonatal tissue-derived MSC. Cell Commun Signal 9:12. doi:10.1186/1478-811X-9-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Cesselli D, Beltrami AP, Rigo S, Bergamin N, D’Aurizio F, Verardo R, Piazza S, Klaric E, Fanin R, Toffoletto B, Marzinotto S, Mariuzzi L, Finato N, Pandolfi M, LeriA Schneider C, Beltrami CA, Anversa P (2009) Multipotent progenitor cells are present in human peripheral blood. Circ Res 104:1225–1234

    Article  CAS  PubMed  Google Scholar 

  51. Chong PP, Selvaratnam L, Abbas AA, Kamarul T (2012) Human peripheral blood derived mesenchymal stem cells demonstrate similar characteristics and chondrogenic differentiation potential to bone marrow derived mesenchymal stem cells. J Orthop Res 30:634–642

    Article  CAS  PubMed  Google Scholar 

  52. Yang HS, Kim GH, La WG, Bhang SH, Lee TJ, Lee JH, Kim BS (2011) Enhancement of human peripheral blood mononuclear cell transplantation-mediated bone formation. Cell Transplant 20:1445–1452

    Article  PubMed  Google Scholar 

  53. American Diabetes Association Expert Committee (1997) Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care 20:1183–1197

    Article  Google Scholar 

  54. National Diabetes Data Group (1979) Classification and diagnosis of diabetes mellitus and other categories of glucose intolerance. Diabetes 28:1039–1057

    Article  Google Scholar 

  55. World Health Organization (1994). Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. Technical report series no. 843. World Health Organization, Geneva

  56. Al-Shanti N, Saini A, Stewart CE (2009) Two-step versus one-step RNA-to-CT 2-step and one-step rNA-to-CT 1-step: validity, sensitivity, and efficiency. J Biomol Tech 20:172–179

    PubMed  PubMed Central  Google Scholar 

  57. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini FC, Krause DS, Deans R, Keating A, Prockop DJ, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by the Thailand Research Fund MRG5480270 (MP), a NSTDA Research Chair Grant from the National Science and Technology Development Agency (NC), and Chiang Mai University Center of Excellence Award (NC). All of the funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mattabhorn Phimphilai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phimphilai, M., Pothacharoen, P., Kongtawelert, P. et al. Impaired osteogenic differentiation and enhanced cellular receptor of advanced glycation end products sensitivity in patients with type 2 diabetes. J Bone Miner Metab 35, 631–641 (2017). https://doi.org/10.1007/s00774-016-0800-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-016-0800-9

Keywords

Navigation