Skip to main content

Advertisement

Log in

Inhibitory effect of bisphosphonate on osteoclast function contributes to improved skeletal pain in ovariectomized mice

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

The aim of this study was to evaluate skeletal pain associated with osteoporosis and to examine the inhibitory effect of bisphosphonate (BP) on pain in an ovariectomized (OVX) mouse model. We evaluated skeletal pain in OVX mice through an examination of pain-like behavior as well as immunohistochemical findings. In addition, we assessed the effects of alendronate (ALN), a potent osteoclast inhibitor, on those parameters. The OVX mice showed a decrease in the pain threshold value, and an increase in the number of c-Fos immunoreactive neurons in laminae I–II of the dorsal horn of the spinal cord. Alendronate caused an increase in the pain threshold value and inhibited c-Fos expression. The serum level of tartrate-resistant acid phosphatase 5b, a marker of osteoclast activity, was significantly negatively correlated with the pain threshold value. Furthermore, we found that an antagonist of the transient receptor potential channel vanilloid subfamily member 1, which is an acid-sensing nociceptor, improved pain-like behavior in OVX mice. These results indicated that the inhibitory effect of BP on osteoclast function might contribute to an improvement in skeletal pain in osteoporosis patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gass M, Dawson HB (2006) Preventing osteoporosis-related fractures: an overview. Am J Med 119:S3–S11

    Article  PubMed  Google Scholar 

  2. National Osteoporosis Foundation (2010) Clinician’s guide to prevention and treatment of osteoporosis. National Osteoporosis Foundation, Washington, DC

    Google Scholar 

  3. Kann P, Schulz G, Schehler B, Beyer J (1993) Backache and osteoporosis in perimenopausal women. Med Klin 88:9–15

    CAS  Google Scholar 

  4. Iwamoto J, Takeda T, Sato Y, Uzawa M (2004) Effect of alendronate on metacarpal and lumbar bone mineral density, bone resorption and chronic back pain in postmenopausal women with osteoporosis. Clin Rheumatol 23:383–389

    Article  PubMed  Google Scholar 

  5. Ghinoi V, Brandi ML (2002) Clodronate: mechanisms of action on bone remodeling and clinical use in osteometabolic disorders. Expert Opin Pharmacother 3:1643–1656

    Article  CAS  PubMed  Google Scholar 

  6. Benford HL, McGowan NW, Helfrich MH, Nuttall ME, Rogers MJ (2001) Visualization of bisphosphonate-induced caspase-3 activity in apoptotic osteoclasts in vitro. Bone 28:465–473

    Article  CAS  PubMed  Google Scholar 

  7. Ohtori S, Akazawa T, Murata Y, Kinoshita T, Yamashita M, Nakagawa K, Inoue G, Nakamura J, Orita S, Ochiai N, Kishida S, Takasa M, Eguchi Y, Yamauchi K, Suzuki M, Aoki Y, Takahashi K (2010) Risedronate decreases bone resorption and improves low back pain in postmenopausal osteoporosis patients without vertebral fractures. J Clin Neurosci 17:209–213

    Article  CAS  PubMed  Google Scholar 

  8. Bonabello A, Galmozzia MR, Bruzzesea T, Zara GP (2001) Analgesic effect of bisphosphonates in mice. Pain 91:269–275

    Article  CAS  PubMed  Google Scholar 

  9. Carvalho AP, Bezerra MM, Girao VC, Cunha FQ, Rocha FA (2006) Anti-inflammatory and anti-nociceptive activity of risedronate in experimental pain model in rats and mice. Clin Exp Pharmacol Physiol 33:601–606

    Article  CAS  PubMed  Google Scholar 

  10. Nagae M, Hiraga T, Wakabayashi H, Wang L, Iwata K, Yoneda T (2006) Osteoclasts play a part in pain due to the inflammation adjacent to bone. Bone 39:1107–1115

    Article  CAS  PubMed  Google Scholar 

  11. Fulfaro F, Casuccio A, Ticozzi C, Ripamonti C (1998) The role of bisphosphonates in the treatment of painful metastatic bone disease. Pain 78:157–169

    Article  CAS  PubMed  Google Scholar 

  12. Iba K, Takada J, Wada T, Yamashita T (2010) Five-year follow-up of Japanese patients with Paget’s disease of the bone after treatment with low-dose oral alendronate: a case series. J Med Case Rep 4:166

    Article  PubMed Central  PubMed  Google Scholar 

  13. Astrom E, Soderhall S (2002) Beneficial effect of long term intravenous bisphosphonate treatment of osteogenesis imperfect. Arch Dis Child 86:356–364

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Washimi Y, Chen H, Ito A, Takao R, Uzawa T, Yamamoto Y, Yamada H, Shoumura S (2010) Effect of intermittent treatment with human parathyroid hormone 1–34 in SAMP6 senescence-accelerated mice. J Endocrinol Invest 33:395–400

    Article  CAS  PubMed  Google Scholar 

  15. Wang X, Wu J, Chiba H, Umegaki K, Yamada K, Ishimi Y (2003) Puerariae radix prevents bone loss in ovariectomized mice. J Bone Miner Metab 21:268–275

    Article  CAS  PubMed  Google Scholar 

  16. Wright LE, Christian PJ, Rivera Z, Van Alstine WG, Funk JL, Bouxsein ML, Hoyer PB (2008) Comparison of skeletal effects of ovariectomy versus chemically induced ovarian failure in mice. J Bone Miner Res 23:1296–1303

    Article  PubMed Central  PubMed  Google Scholar 

  17. Furuya Y, Mori K, Ninomiya T, Tomimori Y, Tanaka S, Takahashi N, Udagawa N, Uchida K, Yasuda H (2011) Increased bone mass in mice after single injection of anti-receptor activator of nuclear factor-κB ligand-neutralizing antibody. J Biol Chem 286:37023–37031

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Kawamata T, Ji W, Yamamoto J, Niiyama Y, Furuse S, Namiki A (2008) Contribution of transient receptor vanilloid subfamily 1 to endothelin-1-induced thermal hyperalgesia. Neuroscience 15:1067–1076

    Article  Google Scholar 

  19. Luger NM, Sabino MA, Schwei MJ, Mach DB, Pomonis JD, Keyser CP, Rathbun M, Clohisy DR, Honore P, Yaksh TL, Mantyh PW (2002) Efficacy of systemic morphine suggests a fundamental difference in the mechanisms that generate bone cancer vs. inflammatory pain. Pain 99:397–406

    Article  CAS  PubMed  Google Scholar 

  20. Crawley JN (1999) Behavioral phenotyping of transgenic and knockout mice: experimental design and evaluation of general health, sensory functions, motor abilities, and specific behavioral tests. Brain Res 835:18–26

    Article  CAS  PubMed  Google Scholar 

  21. Shoji S, Tabuchi M, Miyazawa K, Yabumoto T, Tanaka M, Kadota M, Maeda H, Goto S (2010) Bisphosphonate inhibits bone turnover in OPG−/−mice via a depressive effect on both osteoclasts and osteoblasts. Calcif Tissue Int 87:181–192

    Article  CAS  PubMed  Google Scholar 

  22. Niiyama Y, Kawamata T, Yamamoto J, Furuse S, Namiki A (2009) SB366791, a TRPV1 antagonist, potentiates analgesic effects of systemic morphine in a murine model of bone cancer pain. Br J Anaesth 102:251–258

    Article  CAS  PubMed  Google Scholar 

  23. Kawamata T, Ji W, Yamamoto J, Niiyama Y, Furuse S, Omote K, Namiki A (2009) Involvement of transient receptor potential vanilloid subfamily 1 in endthelin-1-induced pain-like behavior. Neuroreport 20:233–237

    Article  CAS  PubMed  Google Scholar 

  24. Oda K, Amaya Y, Fukushi-Irie M, Kinameri Y, Ohsuye K, Kubota I, Fujimura S, Kobayashi J (1999) A general method for rapid purification of soluble versions of glycosylphosphatidylinositol-anchored proteins expressed in insect cells: an application for human tissue-nonspecific alkaline phosphatase. J Biochem 126:694–699

    Article  CAS  PubMed  Google Scholar 

  25. Kojima T, Freitas PH, Ubaidus S, Suzuki A, Li M, Yoshizawa M, Oda K, Maeda T, Kudo A, Saito C, Amizuka N (2007) Histochemical examinations on cortical bone regeneration induced by thermoplastic bioresorbable plates applied to bone defects of rat calvariae. Biomed Res 28:219–229

    Article  CAS  PubMed  Google Scholar 

  26. Laitala-Leinonen T, Lowik C, Papapoulous S, Vaananen HK (1999) Inhibition of intravacuolar acidification by antisense RNA decreases osteoclast differentiation and bone resorption in vitro. J Cell Sci 112:3657–3666

    CAS  PubMed  Google Scholar 

  27. Cummings SR, Melton LJ (2002) Osteoporosis I: epidemiology and outcomes of osteoporotic fractures. Lancet 359:1761–1767

    Article  PubMed  Google Scholar 

  28. Hamba M, Muro M, Hiraide T, Ozawa H (1994) Expression of c-fos like protein of in the rat brain after injection of interleukin-1-beta into the gingiva. Brain Res Bull 34:61–68

    Article  CAS  PubMed  Google Scholar 

  29. Takayama B, Kikuchi S, Konno S, Sekiguchi M (2008) An immunohistochemical study of the antinociceptive effects of calcitonin in ovariectomized rats. BMC Muscloskelet Disord 9:164

    Article  Google Scholar 

  30. Hunt SP, Pini A, Evan G (1987) Induction of c-fos like protein in spinal cord neurons following sensory stimulation. Nature 328:632–634

    Article  CAS  PubMed  Google Scholar 

  31. Teitelbaum SL (2000) Bone resorption by osteoclasts. Science 289:1504–1508

    Article  CAS  PubMed  Google Scholar 

  32. Rousselle AV, Heymann D (2002) Osteoclastic acidification pathways during bone resorption. Bone 30:533–540

    Article  CAS  PubMed  Google Scholar 

  33. Julius D, Basbaum AI (2001) Molecular mechanisms of nociception. Nature 413:203–210

    Article  CAS  PubMed  Google Scholar 

  34. Mantyh PW, Clohisy DR, Koltzenburg M, Hunt SP et al (2002) Molecular mechanisms of cancer pain. Nat Rev Cancer 2:201–209

    Article  CAS  PubMed  Google Scholar 

  35. Mach DB, Rogers SD, Sabino MC, Luger NM, Schwei MJ, Pomonis JD, Keyser CP, Clohisy DR, Adams DJ, O’Leary P, Mantyh PW (2002) Origins of skeletal pain: sensory and sympathetic innervation of the mouse femur. Neuroscience 113:155–166

    Article  CAS  PubMed  Google Scholar 

  36. Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389:816–824

    Article  CAS  PubMed  Google Scholar 

  37. Nagae M, Hiraga T, Yoneda T (2007) Acidic microenvironment created by osteoclasts causes bone pain associated with tumor colonization. J Bone Miner Metab 25:99–104

    Article  PubMed  Google Scholar 

  38. Varga A, Nemeth J, Szabo A, McDougall JJ, Zhang C, Elekes K, Pinter E, Szolcsanyi J, Helyes Z (2005) Effects of the novel TRPV1 receptor antagonist SB366791 in vitro and in vivo in the rat. Neurosci Lett 385:137–142

    Article  CAS  PubMed  Google Scholar 

  39. Akesson K (2003) New approaches to pharmacological treatment of osteoporosis. Bull World Health Organ 81:657–664

    PubMed Central  PubMed  Google Scholar 

  40. Sanoja R, Cervero F (2010) Estrogen-dependent changes in visceral afferent sensitivity. Auton Neurosci 153:84–89

    Article  CAS  PubMed  Google Scholar 

  41. Sanoja R, Cervero F (2005) Estrogen-dependent abdominal hyperalgesia induced by ovariectomy in adult mice: a model of functional abdominal pain. Pain 118:243–253

    Article  CAS  PubMed  Google Scholar 

  42. Orita S, Ohtori S, Koshi T, Yamashita M, Yamauchi K, Inoue G, Suzuki M, Eguchi Y, Kamoda H, Arai G, Ishikawa T, Miyagi M, Ochiai N, Kishida S, Takaso M, Aoki Y, Toyone T, Takahashi K (2010) The effects of risedronate and exercise on osteoporotic lumbar rat vertebrae and their sensory innervations. Spine 35:1974–1982

    Article  PubMed  Google Scholar 

  43. Van Offel JF, Schuerwegh AJ, Bridts CH, Bracke PG, Stevens WJ, De Clerck LS (2001) Influence of cyclic intravenous pamidronate on proinflammatory monocytic cytokine profiles and bone density in rheumatoid arthritis treated with low dose prednisolone and methotrexate. Clin Exp Rheumatol 19:13–20

    PubMed  Google Scholar 

  44. Le Goff B, Heymann D (2011) Pharmacodynamics of bisphosphonates in arthritis. Expert Rev Clin Pharmacol 4:633–641

    Article  PubMed  Google Scholar 

  45. Roelofs AJ, Coxon FP, Ebetino FH, Lundy MW, Henneman ZJ, Nancollas GH, Sun S, Blazewska KM, Bala JL, Kashemirov BA, Khalid AB, Mckenna CE, Rogers MJ (2010) Fluorescent risedronate analogues reveal bisphosphonate uptake by bone marrow monocytes and localization around osteocytes in vivo. J Bone Miner Res 25:606–616

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Ringe JD, Body JJ (2007) A review of bone pain relief with ibandronate and other bisphosphonates in disorders of increased bone turnover. Clin Exp Rheumatol 25:766–774

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Prof. Moriyama, Department of Membrane Biochemistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan, for kindly providing the antibody to V-ATPase. This study was partially supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports and Culture of Japan, and by a grant for scientific research from MSD K.K. (Tokyo, Japan).

Conflict of interest

All authors have no potential conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kousuke Iba.

About this article

Cite this article

Abe, Y., Iba, K., Sasaki, K. et al. Inhibitory effect of bisphosphonate on osteoclast function contributes to improved skeletal pain in ovariectomized mice. J Bone Miner Metab 33, 125–134 (2015). https://doi.org/10.1007/s00774-014-0574-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-014-0574-x

Keywords

Navigation