Skip to main content

Advertisement

Log in

Serum ferritin levels are positively associated with bone mineral density in elderly Korean men: the 2008–2010 Korea National Health and Nutrition Examination Surveys

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

A possible negative effect of iron overload on bone metabolism has been suggested by the fact that patients with hemochromatosis, thalassemia, and sickle cell anemia have lower bone mineral density than the general population. However, the influence of iron overload on bone health in the general population is uncertain. The aim of this study was to investigate the relationship between serum ferritin levels and bone mineral density (BMD) in elderly Koreans. A total of 2,943 subjects aged 65 years and over who participated in the 2008–2010 Korea National Health and Nutrition Examination Surveys were included in this study. Age, physical activity, current smoking status, alcohol consumption, education level, household income, and dietary assessment were surveyed by a face-to-face interview. BMD was measured at the lumbar spine and femur by dual-energy X-ray absorptiometry, and other biochemical markers, including serum ferritin, 25-hydroxyvitamin D3, serum alkaline phosphatase, and parathyroid hormone, were assayed. After adjusting for age and body mass index, we found an association between BMD of the total lumbar spine, total femur, and femur neck and levels of alkaline phosphatase, parathyroid hormone, vitamin D3, and daily intake of calcium and protein. Serum ferritin levels were positively associated with BMD of the total lumbar spine, total femur, and femur neck after adjusting for all covariates in men, but not in women. This study suggests a positive association between serum ferritin levels and BMD in elderly South Korean men without hematologic disorders. Further study is warranted to verify the effects of iron on bone metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Kanis JA, McCloskey EV, Johansson H, Cooper C, Rizzoli R, Reginster JY (2013) European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int 24:23–57

    Google Scholar 

  2. Kanis JA (2002) Diagnosis of osteoporosis and assessment of fracture risk. Lancet 359:1929–1936

    Google Scholar 

  3. Kanis JA, Black D, Cooper C, Dargent P, Dawson-Hughes B, De Laet C, Delmas P, Eisman J, Johnell O, Jonsson B, Melton L, Oden A, Papapoulos S, Pols H, Rizzoli R, Silman A, Tenenhouse A (2002) A new approach to the development of assessment guidelines for osteoporosis. Osteoporos Int 13:527–536

    Article  CAS  PubMed  Google Scholar 

  4. Valenti L, Varenna M, Fracanzani AL, Rossi V, Fargion S, Sinigaglia L (2009) Association between iron overload and osteoporosis in patients with hereditary hemochromatosis. Osteoporos Int 20:549–555 Epub 2008 Jul 2026

    Article  CAS  PubMed  Google Scholar 

  5. Mahachoklertwattana P, Sirikulchayanonta V, Chuansumrit A, Karnsombat P, Choubtum L, Sriphrapradang A, Domrongkitchaiporn S, Sirisriro R, Rajatanavin R (2003) Bone histomorphometry in children and adolescents with beta-thalassemia disease: iron-associated focal osteomalacia. J Clin Endocrinol Metab 88:3966–3972

    Article  CAS  PubMed  Google Scholar 

  6. Voskaridou E, Terpos E (2004) New insights into the pathophysiology and management of osteoporosis in patients with beta thalassaemia. Br J Haematol 127:127–139

    Article  CAS  PubMed  Google Scholar 

  7. Salama OS, Al-Tonbary YA, Shahin RA, Eldeen OA (2006) Unbalanced bone turnover in children with beta-thalassemia. Hematology 11:197–202

    Article  CAS  PubMed  Google Scholar 

  8. Sarrai M, Duroseau H, D’Augustine J, Moktan S, Bellevue R (2007) Bone mass density in adults with sickle cell disease. Br J Haematol 136:666–672

    Article  CAS  PubMed  Google Scholar 

  9. (2008–2010) The Forth and Fifth Korean National Health and Nutrition Examination Survey (KNHANES IV and V). Korea Centers for Disease Control and Prevention

  10. Hagstromer M, Oja P, Sjostrom M (2006) The international physical activity questionnaire (IPAQ): a study of concurrent and construct validity. Public Health Nutr 9:755–762

    Article  PubMed  Google Scholar 

  11. Agarwal DP (2002) Cardioprotective effects of light-moderate consumption of alcohol: a review of putative mechanisms. Alcohol Alcohol 37:409–415

    Article  CAS  PubMed  Google Scholar 

  12. Seftel HC, Malkin C, Schmaman A, Abrahams C, Lynch SR, Charlton RW, Bothwell TH (1966) Osteoporosis, scurvy, and siderosis in Johannesburg bantu. Br Med J 1:642–646

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Lynch SR, Berelowitz I, Seftel HC, Miller GB, Krawitz P, Charlton RW, Bothwell TH (1967) Osteoporosis in Johannesburg Bantu males. Its relationship to siderosis and ascorbic acid deficiency. Am J Clin Nutr 20:799–807

    CAS  PubMed  Google Scholar 

  14. Eyres KS, McCloskey EV, Fern ED, Rogers S, Beneton M, Aaron JE, Kanis JA (1992) Osteoporotic fractures: an unusual presentation of haemochromatosis. Bone 13:431–433

    Article  CAS  PubMed  Google Scholar 

  15. Eren E, Yilmaz N (2005) Biochemical markers of bone turnover and bone mineral density in patients with beta-thalassaemia major. Int J Clin Pract 59:46–51

    Article  CAS  PubMed  Google Scholar 

  16. Mahachoklertwattana P, Chuansumrit A, Sirisriro R, Choubtum L, Sriphrapradang A, Rajatanavin R (2003) Bone mineral density, biochemical and hormonal profiles in sub-optimally treated children and adolescents with beta-thalassaemia disease. Clin Endocrinol (Oxf) 58:273–279

    Article  CAS  Google Scholar 

  17. Bielinski BK, Darbyshire PJ, Mathers L, Crabtree NJ, Kirk JM, Stirling HF, Shaw NJ (2003) Impact of disordered puberty on bone density in beta-thalassaemia major. Br J Haematol 120:353–358

    Article  PubMed  Google Scholar 

  18. Sadat-Ali M, Sultan O, Al-Turki H, Alelq A (2011) Does high serum iron level induce low bone mass in sickle cell anemia? Biometals 24:19–22 Epub 2010 Nov 2026

    Article  CAS  PubMed  Google Scholar 

  19. Theil EC (1987) Ferritin: structure, gene regulation, and cellular function in animals, plants, and microorganisms. Annu Rev Biochem 56:289–315

    Article  CAS  PubMed  Google Scholar 

  20. Orino K, Lehman L, Tsuji Y, Ayaki H, Torti SV, Torti FM (2001) Ferritin and the response to oxidative stress. Biochem J 357:241–247

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Angus RM, Sambrook PN, Pocock NA, Eisman JA (1988) Dietary intake and bone mineral density. Bone Miner 4:265–277

    CAS  PubMed  Google Scholar 

  22. Harris MM, Houtkooper LB, Stanford VA, Parkhill C, Weber JL, Flint-Wagner H, Weiss L, Going SB, Lohman TG (2003) Dietary iron is associated with bone mineral density in healthy postmenopausal women. J Nutr 133:3598–3602

    CAS  PubMed  Google Scholar 

  23. Michaelsson K, Holmberg L, Mallmin H, Wolk A, Bergstrom R, Ljunghall S (1995) Diet, bone mass, and osteocalcin: a cross-sectional study. Calcif Tissue Int 57:86–93

    Article  CAS  PubMed  Google Scholar 

  24. de Vernejoul MC, Pointillart A, Golenzer CC, Morieux C, Bielakoff J, Modrowski D, Miravet L (1984) Effects of iron overload on bone remodeling in pigs. Am J Pathol 116:377–384

    PubMed Central  PubMed  Google Scholar 

  25. Isomura H, Fujie K, Shibata K, Inoue N, Iizuka T, Takebe G, Takahashi K, Nishihira J, Izumi H, Sakamoto W (2004) Bone metabolism and oxidative stress in postmenopausal rats with iron overload. Toxicology 197:93–100

    Article  CAS  PubMed  Google Scholar 

  26. Tsay J, Yang Z, Ross FP, Cunningham-Rundles S, Lin H, Coleman R, Mayer-Kuckuk P, Doty SB, Grady RW, Giardina PJ, Boskey AL, Vogiatzi MG (2010) Bone loss caused by iron overload in a murine model: importance of oxidative stress. Blood 116:2582–2589 Epub 2010 Jun 2516

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Buyukbese MA, Cetinus E, Cetinkaya A, Aras S (2005) Ferritin levels in postmenopausal women do not seem to play a significant role in osteoporosis. South Med J 98:845

    Article  PubMed  Google Scholar 

  28. Guggenbuhl P, Deugnier Y, Boisdet JF, Rolland Y, Perdriger A, Pawlotsky Y, Chales G (2005) Bone mineral density in men with genetic hemochromatosis and HFE gene mutation. Osteoporos Int 16:1809–1814 Epub 2005 Jun 1801

    Article  CAS  PubMed  Google Scholar 

  29. Katsumata S, Tsuboi R, Uehara M, Suzuki K (2006) Dietary iron deficiency decreases serum osteocalcin concentration and bone mineral density in rats. Biosci Biotechnol Biochem 70:2547–2550 Epub 2006 Oct 2547

    Article  CAS  PubMed  Google Scholar 

  30. Medeiros DM, Plattner A, Jennings D, Stoecker B (2002) Bone morphology, strength and density are compromised in iron-deficient rats and exacerbated by calcium restriction. J Nutr 132:3135–3141

    CAS  PubMed  Google Scholar 

  31. Maurer J, Harris MM, Stanford VA, Lohman TG, Cussler E, Going SB, Houtkooper LB (2005) Dietary iron positively influences bone mineral density in postmenopausal women on hormone replacement therapy. J Nutr 135:863–869

    CAS  PubMed  Google Scholar 

  32. DeLuca HF (1976) Metabolism of vitamin D: current status. Am J Clin Nutr 29:1258–1270

    CAS  PubMed  Google Scholar 

  33. Tuderman L, Myllyla R, Kivirikko KI (1977) Mechanism of the prolyl hydroxylase reaction. 1. Role of co-substrates. Eur J Biochem 80:341–348

    Article  CAS  PubMed  Google Scholar 

  34. Prockop DJ (1971) Role of iron in the synthesis of collagen in connective tissue. Fed Proc 30:984–990

    CAS  PubMed  Google Scholar 

  35. Movahed A, Larijani B, Nabipour I, Kalantarhormozi M, Asadipooya K, Vahdat K, Akbarzadeh S, Farrokhnia M, Assadi M, Amirinejad R, Bargahi A, Sanjdideh Z (2012) Reduced serum osteocalcin concentrations are associated with type 2 diabetes mellitus and the metabolic syndrome components in postmenopausal women: the crosstalk between bone and energy metabolism. J Bone Miner Metab 30:683–691

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

All authors have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Do Hoon Kim.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 267 kb)

Supplementary material 2 (DOCX 12 kb)

About this article

Cite this article

Lee, K.S., Jang, J.S., Lee, D.R. et al. Serum ferritin levels are positively associated with bone mineral density in elderly Korean men: the 2008–2010 Korea National Health and Nutrition Examination Surveys. J Bone Miner Metab 32, 683–690 (2014). https://doi.org/10.1007/s00774-013-0540-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-013-0540-z

Keywords

Navigation