Skip to main content
Log in

Composite hovering control of underwater vehicles via variable ballast systems

  • Original article
  • Published:
Journal of Marine Science and Technology Aims and scope Submit manuscript

Abstract

In this paper, a composite hovering control scheme is proposed to improve the disturbance rejection performance of underwater vehicles via variable ballast systems (VBSs). A nonlinear disturbance observer (NDOB) based feedforward controller, which estimates and then compensates the resultant force of external disturbances, is augmented to the conventional proportional plus derivative (PD) based feedback control system. Both stability and convergence of the overall system have been guaranteed via Lyapunov analysis. Simulation results show that the NDOB based composite hovering control system exhibits more desirable performance in disturbance rejection than conventional PD control system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Fletcher B, Bowen A, Yoerger DR, Whitcomb LL (2009) Journey to the challenger deep: 50 years later with the Nereus hybrid remotely operated vehicle. Mar Technol Soc J 43(5):65–76

    Article  Google Scholar 

  2. Galceran E, Campos R, Palomeras N, Ribas D, Carreras M, Ridao P (2015) Coverage path planning with real-time replanning and surface reconstruction for inspection of three-dimensional underwater structures using autonomous underwater vehicles. J Field Robot 32(7):952–983

    Article  Google Scholar 

  3. Maurya PK, De Sa E, Dubey AC, Dabholkar N, Pascoal A (2016) Autonomous hovering profiler. IEEE/OES Auton Underw Veh (AUV). https://doi.org/10.1109/AUV.2016.7778682

    Article  Google Scholar 

  4. Khojasteh D, Kamali R (2017) Design and dynamic study of a ROV with application to oil and gas industries of Persian Gulf. Ocean Eng 136:18–30

    Article  Google Scholar 

  5. Gao X, Ding K, Ren YG, Fu WT, Ding ZJ, Zhao SY, Liu BH (2017) Target deployment and retrieval using JIAOLONG manned submersible in the depth of 6600 m in Mariana Trench. China Ocean Eng 31(5):618–623

    Article  Google Scholar 

  6. Yuh J, West M (2001) Underwater robotics. Adv Robot 15(5):609–639

    Article  Google Scholar 

  7. Gilmour B, Niccum G, O’Donnell T (2012) Field resident AUV systems—Chevron’s long-term goal for AUV development. IEEE/OES Auton Underw Veh (AUV). https://doi.org/10.1109/AUV.2012.6380718

    Article  Google Scholar 

  8. Ridao P, Carreras M, Ribas D, Sanz PJ, Oliver G (2015) Intervention auvs: the next challenge. Ann Rev Control 40:227–241

    Article  Google Scholar 

  9. Font R, García-Peláez J (2013) On a submarine hovering system based on blowing and venting of ballast tanks. Ocean Eng 72:441–447

    Article  Google Scholar 

  10. Steenson LV, Turnock SR, Phillips AB, Harris C, Furlong ME, Rogers E, Wang L, Bodles K, Evans DW (2014) Model predictive control of a hybrid autonomous underwater vehicle with experimental verification. Proc Inst Mech Eng 228(2):166–179

    Google Scholar 

  11. Wang L (2009) Model predictive control system design and implementation using MATLAB®. Springer Science and Business Media, Berlin

    Google Scholar 

  12. Fossen TI, Foss BA (1991) Sliding control of MIMO nonlinear systems. Model Identif Control 12(3):129–138

    Article  MathSciNet  Google Scholar 

  13. Tangirala S, Dzielski J (2007) A variable buoyancy control system for a large AUV. IEEE J Ocean Eng 32(4):762–771

    Article  Google Scholar 

  14. Vasilescu I, Detweiler C, Doniec M, Gurdan D, Sosnowski S, Stumpf J, Rus D (2010) Amour v: a hovering energy efficient underwater robot capable of dynamic payloads. Int J Robot Res 29(5):547–570

    Article  Google Scholar 

  15. Woods SA, Bauer RJ, Seto ML (2012) Automated ballast tank control system for autonomous underwater vehicles. IEEE J Ocean Eng 37(4):727–739

    Article  Google Scholar 

  16. Jin S, Kim J, Kim J, Seo T (2015) Six-degree-of-freedom hovering control of an underwater robotic platform with four tilting thrusters via selective switching control. IEEE/ASME Trans Mechatron 20(5):2370–2378

    Article  Google Scholar 

  17. Fossen TI (1994) Guidance and control of ocean vehicles. Wiley, Hoboken

    Google Scholar 

  18. Furlong ME, Paxton D, Stevenson P, Pebody M, Mcphail SD, Perrett J (2012) Autosub long range: a long range deep diving AUV for ocean monitoring. IEEE/OES Auton Underw Veh (AUV). https://doi.org/10.1109/AUV.2012.6380737

    Article  Google Scholar 

  19. Chen WH, Yang J, Guo L, Li S (2016) Disturbance-observer-based control and related methods—an overview. IEEE Trans Ind Electron 63(2):1083–1095

    Article  Google Scholar 

  20. Chen WH, Ballance DJ, Gawthrop PJ, O’Reilly J (2000) A nonlinear disturbance observer for robotic manipulators. IEEE Trans Ind Electron 47(4):932–938

    Article  Google Scholar 

  21. Chen WH (2004) Disturbance observer based control for nonlinear systems. IEEE/ASME Trans Mechatron 9(4):706–710

    Article  MathSciNet  Google Scholar 

  22. Liu Y, Zhao X, Wu D, Li D, Li X (2015) Study on the control methods of a water hydraulic variable ballast system for submersible vehicles. Ocean Eng 108:648–661

    Article  Google Scholar 

  23. Zhao X, Liu Y, Han M, Wu D, Li D (2016) Improving the performance of an AUV hovering system by introducing low-cost flow rate control into water hydraulic variable ballast system. Ocean Eng 125:155–169

    Article  Google Scholar 

  24. Fossen TI (2011) Handbook of marine craft hydrodynamics and motion control. Wiley, Hoboken

    Book  Google Scholar 

  25. Strang G (2016) Introduction to linear algebra, vol 5. Wellesley-Cambridge Press, Wellesley

    MATH  Google Scholar 

  26. Horn RA, Johnson CR (2012) Matrix analysis, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengping Feng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bi, A., Feng, Z. Composite hovering control of underwater vehicles via variable ballast systems. J Mar Sci Technol 25, 659–666 (2020). https://doi.org/10.1007/s00773-019-00670-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00773-019-00670-z

Keywords

Navigation