Skip to main content
Log in

Die Silikon-beschichtete Polyester-Prothese

Weiterführende Modifikationen und Vorstellung des „drug releasing graft“

The silicone coated polyester prosthesis

Further modifications and introduction of the “drug releasing graft”

  • Intimahyperplasie
  • Published:
Gefässchirurgie Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Wir berichten über die Entwicklung einer multifunktionellen, silikonbeschichteten Polyesterprothese.

Material und Methoden

Herkömmliche Polyesterprothesen wurden mit Silikon beschichtet. Es folgte eine Oberflächenmodifizierung mit unterschiedlichen Molekülen. Anschließend wurden Substanzen in die Matrix des Silikons eingebracht, die wieder abgegeben werden können. Die Prothesen wurden hinsichtlich ihrer physikalischen und biologischen Eigenschaften analysiert.

Ergebnisse

In ihren physikalischen Charakteristika, wie z. B. Dichtigkeit, Compliance und Steifigkeit, ist eine mit 16–20 mg/cm2 Silikon-beschichtete Prothese mit herkömmlichen Materialien vergleichbar. Bei der Thrombogenität zeigten die Polyvinylalkohol- und phosphocholinmodifizierten Prothesen Vorteile. Die eluierten Substanzen wurden je nach Eigenschaften entweder bevorzugt ins Medium (ASS) oder in angrenzendes Gewebe abgegeben (Sudanrot, Sirolimus, weiteres Immunsuppressivum). Im Tierversuch konnte durch die Abgabe der Substanzen ein Effekt auf die Intimahyperplasie demonstriert werden.

Schlussfolgerung

Die hier vorgestellte Prothese ist hinsichtlich ihrer Eigenschaften beliebig modifizierbar. Neben der Verbesserung der Hämokompatibilität steht mit der Elution von Molekülen ein geeignetes Instrument zur lokalen Medikamentenfreisetzung zur Verfügung.

Abstract

Background

Herein we report on the development of a multifunctional, silicone-coated polyester graft.

Methods

Normal polyester prostheses were coated with silicone. Afterwards, the surface was modified with different functional groups. In addition, substances with the aim of elution were incorporated into the bulk of the silicone. We analyzed these grafts regarding their physical and biological properties.

Results

Physical and biological characteristics (such as density, compliance, and stiffness) of a polyester graft coated with 16–20 mg silicone/cm2 are comparable to a normal prosthesis. In surface modification, polyvinylalcohol and phosphocholine-modified materials showed advantages regarding thrombogenicity. The eluted molecules could be found preferentially in the medium used (ASS) or in the tissue adjacent to the bypass (Sudan red, sirolimus, and another immunosuppressive drug). In the animal study, the elution of the substances was demonstrated by the effect on the intimal hyperplasia.

Conclusions

The prosthesis presented in this paper may be modified in many ways. Besides optimizing the hemocompatibility, the elution of molecules offers a tremendous tool for local drug release.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  1. Ao PY, Hawthorne WJ, Vicaretti M Fletcher JP (2000) Development of intimal hyperplasia in six different vascular prostheses. Eur J Vasc Endovasc Surg 20: 241–249

    Article  CAS  PubMed  Google Scholar 

  2. Asahara T, Bauters C, Pastore C et al. (1995) Local delivery of vascular endothelial growth factor accelerates reendothelialization and attenuates intimal hyperplasia in balloon-injured rat carotid artery. Circulation 91: 2793–2801

    CAS  PubMed  Google Scholar 

  3. Bartorelli AL, Trabattoni D, Fabbiocchi F et al. (2003) Synergy of passive coating and targeted drug delivery: the tacrolimus-eluting Janus Carbo Stent. J Interv Cardiol 16: 499–505

    Article  PubMed  Google Scholar 

  4. Boffa GA, Lucien N, Faure A, Boffa MC (1977) Polytetrafluoroethylene-N-vinylpyrrolidone graft copolymers: affinity with plasma proteins. J Biomed Mater Res 11: 317–337

    CAS  PubMed  Google Scholar 

  5. Brinton LA, Lubin JH, Burich MC et al. (2000) Breast cancer following augmentation mammoplasty (United States). Cancer Causes Control 11: 819–827

    Article  CAS  PubMed  Google Scholar 

  6. Chen C, Lumsden AB, Ofenloch JC et al. (1997) Phosphorylcholine coating of ePTFE grafts reduces neointimal hyperplasia in canine model. Ann Vasc Surg 11: 74–79

    Article  CAS  PubMed  Google Scholar 

  7. Cholakis CH, Sefton MV (1989) In vitro platelet interactions with a heparin-polyvinyl alcohol hydrogel. J Biomed Mater Res 23: 399–415

    CAS  PubMed  Google Scholar 

  8. Debus ES, Larena-Avellaneda A, Dietz UA, Siegel R, Gattenlöhner S, Franke S (2002) Die silikonbeschichtete Polyesterprothese—Ergebnisse nach subrenalem Aortenersatz im Hundemodell. Gefäßchirurgie 7: 65–69

  9. Dormandy JA, Rutherford RB (2000) Management of peripheral arterial disease (PAD). TASC Working Group. TransAtlantic Inter-Society Concensus (TASC). J Vasc Surg 31: S1–S296

    CAS  PubMed  Google Scholar 

  10. Drasler WJ, Wilson GJ, Stenoien MD et al. (1993) A spun elastomeric graft for dialysis access. ASAIO J 39: 114–119

    CAS  PubMed  Google Scholar 

  11. Drury JK, Ashton TR, Cunningham JD, Maini R, Pollock JG (1987) Experimental and clinical experience with a gelatin impregnated Dacron prosthesis. Ann Vasc Surg 1: 542–547

    CAS  PubMed  Google Scholar 

  12. Duda SH, Pusich B, Richter G et al. (2002) Sirolimus-eluting stents for the treatment of obstructive superficial femoral artery disease: six-month results. Circulation 106: 1505–1509

    Google Scholar 

  13. Farb A, Heller PF, Shroff S et al. (2001) Pathological analysis of local delivery of paclitaxel via a polymer-coated stent. Circulation 104: 473–479

    CAS  PubMed  Google Scholar 

  14. Farrar DJ (2000) Development of a prosthetic coronary artery bypass graft. Heart Surg Forum 3: 36–40

    CAS  PubMed  Google Scholar 

  15. Fontaine AB, Borsa JJ, Dos Passos S et al. (2001) Evaluation of local abciximab delivery from the surface of a polymer-coated covered stent: in vivo canine studies. J Vasc Interv Radiol 12: 487–492

    CAS  PubMed  Google Scholar 

  16. Godo MN, Sefton MV (1999) Characterization of transient platelet contacts on a polyvinyl alcohol hydrogel by video microscopy. Biomaterials 20: 1117–1126

    Article  CAS  PubMed  Google Scholar 

  17. Gombotz WR, Wang GH, Horbett TA, Hoffman AS (1991) Protein adsorption to poly(ethylene oxide) surfaces. J Biomed Mater Res 25: 1547–1562

    CAS  PubMed  Google Scholar 

  18. Granke K, Ochsner JL, McClugage SG, Zdrahal P (1993) Analysis of graft healing in a new elastomer-coated vascular prosthesis. Cardiovasc Surg 1: 254–261

    CAS  PubMed  Google Scholar 

  19. Harris JM, Martin LF (1987) An in vitro study of the properties influencing Staphylococcus epidermidis adhesion to prosthetic vascular graft materials. Ann Surg 206: 612–620

    CAS  PubMed  Google Scholar 

  20. Hwang CW, Wu D, Edelman ER (2001) Physiological transport forces govern drug distribution for stent-based delivery. Circulation 104: 600–605

    CAS  PubMed  Google Scholar 

  21. Ji J, Feng L, Barbosa MA (2001) Stearyl poly(ethylene oxide) grafted surfaces for preferential adsorption of albumin. Biomaterials 22: 3015–3023

    Article  CAS  PubMed  Google Scholar 

  22. Keough EM, Mackey WC, Connolly R et al. (1985) The interaction of blood components with PDMS (polydimethylsiloxane) and LDPE (low-density polyethylene) in a baboon ex vivo arteriovenous shunt model. J Biomed Mater Res 19: 577–587

    CAS  PubMed  Google Scholar 

  23. Lee JH, Jeong BJ, Lee HB (1997) Plasma protein adsorption and platelet adhesion onto comb-like PEO gradient surfaces. J Biomed Mater Res 34: 105–114

    Article  CAS  PubMed  Google Scholar 

  24. Lumsden AB, Chen C, Coyle KA, Ofenloch JC, Wang JH, Yasuda HK, Hanson SR (1996) Nonporous silicone polymer coating of expanded polytetrafluoroethylene grafts reduces graft neointimal hyperplasia in dog and baboon models. J Vasc Surg 24: 825–833

    CAS  PubMed  Google Scholar 

  25. Nakayama Y, Nishi S, Ishibashi-Ueda H (2003) Fabrication of drug-eluting covered stents with micropores and differential coating of heparin and FK506. Cardiovasc Radiat Med 4: 77–82

    Article  PubMed  Google Scholar 

  26. Okoshi T (1995) New concept of microporous structure in small diameter vascular prostheses. Artif Organs 19: 27–31

    CAS  PubMed  Google Scholar 

  27. Seare WJ Jr, Pantalos GM, Burns GL, Burt WR, Olsen DB (1993) Quantitative bacterial analysis of porous, fabric, and smooth non-blood contacting implant surfaces and their tissue interfaces in a 169 day pneumatic total artificial heart animal recipient. ASAIO J 39: M668–74

    PubMed  Google Scholar 

  28. Silber S (2003) Paclitaxel-eluting stents: are they all equal? An analysis of six randomized controlled trials in de novo lesions of 3,319 patients. J Interv Cardiol 16: 485–490

    Article  PubMed  Google Scholar 

  29. Stratton JR, Thiele BL, Ritchie JL (1983) Natural history of platelet deposition on Dacron aortic bifurcation grafts in the first year after implantation. Am J Cardiol 52: 371–374

    CAS  PubMed  Google Scholar 

  30. Van Belle E, Maillard L, Tio FO, Isner JM (1997) Accelerated endothelialization by local delivery of recombinant human vascular endothelial growth factor reduces in-stent intimal formation. Biochem Biophys Res Commun 235: 311–316

    Article  PubMed  Google Scholar 

  31. Walpoth BH, Pavlicek M, Celik B et al. (2001) Prevention of neointimal proliferation by immunosuppression in synthetic vascular grafts. Eur J Cardiothorac Surg 19: 487–492

    Article  CAS  PubMed  Google Scholar 

  32. Wan WK, Lovich MA, Hwang CW, Edelman ER (1999) Measurement of drug distribution in vascular tissue using quantitative fluorescence microscopy. J Pharm Sci 88: 822–829

    Article  CAS  PubMed  Google Scholar 

  33. Wendel HP, Philipp A, Weber N, Birnbaum DE, Ziemer G (2001) Oxygenator thrombosis: worst case after development of an abnormal pressure gradient--incidence and pathway. Perfusion 16: 271–278

    CAS  PubMed  Google Scholar 

  34. Whalen RL, Cardona RR, Kantrowitz A (1992) A new, all silicone rubber small vessel prosthesis. ASAIO J 38: M207–212

    CAS  PubMed  Google Scholar 

  35. White RA, Klein SR, Shors EC (1987) Preservation of compliance in a small diameter microporous, silicone rubber vascular prosthesis. J Cardiovasc Surg (Torino) 28: 485–490

    Google Scholar 

Download references

Interessenkonflikt:

Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Larena-Avellaneda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larena-Avellaneda, A., Debus, E.S., Siegel, R. et al. Die Silikon-beschichtete Polyester-Prothese. Gefässchirurgie 9, 105–110 (2004). https://doi.org/10.1007/s00772-004-0340-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00772-004-0340-9

Schlüsselwörter

Keywords

Navigation