Skip to main content
Log in

Traceability in quantitative NMR using an electronic signal as working standard

  • General paper
  • Published:
Accreditation and Quality Assurance Aims and scope Submit manuscript

Abstract

The choice of the reference, either as internal or external is not straightforward in quantitative NMR. In this context ERETIC™ methodology appears as an universal referencing technique. An electronic signal, generated by the NMR spectrometer during the acquisition time, operates as a virtual working standard. The processes for ensuring a traceability to primary standards is illustrated on the official method devoted to (D/H)i ratios measurement on ethanol, using quantitative 2H-NMR. The ERETIC approach is shown to be equivalent to its official homologue, in terms of accuracy and precision. Finally, its performance could be beneficial to other analytes, matrices and nuclei.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Jancke H (1998) NMR spectroscopy as primary analytical method. CCQM Rep 98:1–12

    Google Scholar 

  2. Ernst RR, Bodenhausen G, Wokaun A (1987) Principles of nuclear magnetic resonance in one and two dimensions. Clarendon Press, Oxford

    Google Scholar 

  3. Jones C, Lemercinier X (2002) J Pharm Biomed Anal 30:1233–1247

    Article  CAS  Google Scholar 

  4. Burton IW, Quilliam MA, Walter JA (2005) Anal Chem 77:3123–3131

    Article  CAS  Google Scholar 

  5. Wells RJ, Hook JM, Saed Al-Deen T, Hibbert DB (2002) J Agric Food Chem 50:3366–3374

    Article  CAS  Google Scholar 

  6. Martin GJ, Martin ML (1995) Annu Rep NMR spectroscopy 31:81–103

    Article  CAS  Google Scholar 

  7. Council regulation EEC No. 2676/90 (1990) Official Journal of the European Communities L272:64–73

    Google Scholar 

  8. Remaud GS, Martin Y-L, Martin GG, Martin GJ (1997) J Agric Food Chem 45:859–866

    Article  CAS  Google Scholar 

  9. Remaud GS, Debon AA, Martin Y-L, Martin GG, Martin GJ (1997) J Agric Food Chem 45:4042–4048

    Article  CAS  Google Scholar 

  10. Zhang B-L, Buddrus S, Martin ML (2000) Bioorg Chem 28:1–15

    Article  CAS  Google Scholar 

  11. Zhang B-L, Billault I, Li X, Mabon F, Remaud GS, Martin ML (2002) J Agric Food Chem 50:1574–1580

    Article  CAS  Google Scholar 

  12. Robins RJ, Billault I, Duan J-R, Guiet S, Pionnier S, Zhang B-L (2003) Phytochemistry Rev 2:87–102

    Article  CAS  Google Scholar 

  13. Tenailleau EJ, Lancelin P, Robins RJ, Akoka S (2004) J Agric Food Chem 52:7782–7787

    Article  CAS  Google Scholar 

  14. Maniara G, Rajamoorthi K, Rajan S, Stockton GW (1998) Anal Chem 70:4921–4928

    Article  CAS  Google Scholar 

  15. Saed Al-Deen T, Hibbert DB, Hook JM, Wells RJ (2002) Anal Chim Acta 474:125–135

    Article  CAS  Google Scholar 

  16. Wells RJ, Cheung J, Hook JM (2004) Accred Qual Assur 9:450–456

    Article  CAS  Google Scholar 

  17. Henderson TJ (2002) Anal Chem 74:191–198

    Article  CAS  Google Scholar 

  18. STA-003 (TMU), IRMM, Geel (Belgium)

  19. Gonzalez J, Jamin E, Remaud GS, Martin Y-L, Martin GG, Martin ML (1998) J Agric Food Chem 46:2200–2205

    Article  CAS  Google Scholar 

  20. Akoka S, Barantin L, Trierweiler M (1999) Anal Chem 71:2554–2557

    Article  CAS  Google Scholar 

  21. Barantin L, Lepape A, Akoka S (1997) Magn Reson Med 38:179–182

    Article  CAS  Google Scholar 

  22. Billault I, Akoka S (2000) Instrum Sci Technol 28:233–240

    Article  CAS  Google Scholar 

  23. Silvestre V, Goupry S, Trierweiler M, Robins R, Akoka S (2001) Anal Chem 73:1862–1868

    Article  CAS  Google Scholar 

  24. Billault I, Robins R, Akoka S (2002) Anal Chem 74:5902–5906

    Article  CAS  Google Scholar 

  25. Le Grand F, Akoka S (2004) C R Acad Sci Paris Chimie 7:233–239

    CAS  Google Scholar 

  26. Le Grand F, George G, Akoka S (2005) J Magn Reson 174:171–176

    Article  CAS  Google Scholar 

  27. Bauer-Christoph C, Watchter H, Christoph N, Rossmann A, Adam L (1997) Z Lebensm Unters Forsch 204:445–452

    Article  CAS  Google Scholar 

  28. Martin Y-L (1994) J Magn Res A 111:1–10

    Article  CAS  Google Scholar 

  29. Martin GJ, Trierweiler M, Ristow R, Hermann A, Belliardo J-J (1994) CRM 123 BCR information EUR 15347 EN

  30. Guillou C, Remaud GS, Lees M (2001) BCR-656, BCR-660 BCR Information EUR 20064 EN

  31. JRC FP6-WP2005, http://projects-2005.jrc.cec.eu.int

  32. Hagemann R, Hief G, Roth E (1970) Tellus 22:712–715

    Article  CAS  Google Scholar 

  33. Guillou C, Trierweiler M, Martin GJ (1988) Magn Reson Chem 26:491–496

    Article  CAS  Google Scholar 

  34. Saed Al-Deen T, Hibbert DB, Hook JM, Wells RJ (2004) Accred Qual Assur 9:55–63

    Article  CAS  Google Scholar 

  35. Akoka S, Trierweiler M (2002) Instrum Sci Technol 30:21–29

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr R. Robins for reviewing the manuscript and for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gérald S. Remaud.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Remaud, G.S., Silvestre, V. & Akoka, S. Traceability in quantitative NMR using an electronic signal as working standard. Accred Qual Assur 10, 415–420 (2005). https://doi.org/10.1007/s00769-005-0044-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00769-005-0044-1

Keywords

Navigation