Skip to main content

Advertisement

Log in

Requirements engineering in health care: the example of chemotherapy planning in paediatric oncology

  • Original Article
  • Published:
Requirements Engineering Aims and scope Submit manuscript

Abstract

Health care is characterized by highly complex processes of patient care that require unusual amount of communication between different health care professionals of different institutions. Sub-optimal processes can significantly impact on the patient’s health, increase the consumption of services and resources and in severe cases can lead to the patient death. For these reasons, requirements engineering for the development of information technology in health care is a complex process as well: without constant and rigorous evaluation, the impact of new systems on the quality of care is unknown and it is possible that badly designed systems significantly harm patients. To overcome these limitations, we present and discuss an approach to requirements engineering that we applied for the development of applications for chemotherapy planning in paediatric oncology. Chemotherapy planning in paediatric oncology is complex and time-consuming and errors must be avoided by all means. In the multi-hospital/multi-trial-centre environment of paediatric oncology, it is especially difficult and time-consuming to analyse requirements. Our approach combines a grounded theory approach with evolutionary prototyping based on the constant development and refinement of a generic domain model, in this case a domain model for chemotherapy planning in paediatric oncology. The prototypes were introduced in medical centres and final results show that the developed generic domain model is adequate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. van Bemmel JH, Musen MA (1997) Handbook of medical informatics. Springer, Heidelberg

  2. Horsky J, Zhang J, Patel VL (2005) To err is not entirely human: complex technology and user cognition. J Biomed Inform 38(4):264–266

    Article  PubMed  Google Scholar 

  3. Ahmad A, Teater P, Bentley TD, Kuehn L, Kumar RR, Thomas A, Mekhjian HS (2002) Key attributes of a successful physician order entry system implementation in a multi-hospital environment. J Am Med Inform Assoc 9(1):16–24

    PubMed  Google Scholar 

  4. Dadam P, Reichert M, Kuhn K (2000) Clinical workflows—the killer application for process-oriented information systems? In: 4th International conference on business information systems (BIS 2000), Poznan, Poland, pp 36–59

  5. Brandner R, van der Haak M, Hartmann M, Haux R, Schmücker P (2002) Electronic signature for medical documents—integration and evaluation of a public key infrastructure in hospitals. Methods Inf Med 41(4):321–330

    PubMed  Google Scholar 

  6. Zhang J, Patel VL, Johnson TR, Shortliffe EH (2004) A cognitive taxonomy of medical errors. J Biomed Inform 37(3):193–204

    Article  PubMed  Google Scholar 

  7. Makeham MA, Dovey SM, County M, Kidd MR (2002) An international taxonomy for errors in general practice: a pilot study. Med J Aust 177(2):68–72

    PubMed  Google Scholar 

  8. Wilson RM, Runciman WB, Gibberd RW (1995) The quality in Australian health care study. Med J Aust 163:458–471

    PubMed  Google Scholar 

  9. Koppel R, Metlay JP, Cohen A, Abaluck B, Localio AR, Kimmel SE, Strom BL (2005) Role of computerized physician order entry systems in facilitating medication errors. JAMA 293(10):1197–1203

    Article  PubMed  Google Scholar 

  10. Shortliffe EH (1995) When decision support doesn’t support. Med Decis Making 15(2):187–188

    Article  PubMed  Google Scholar 

  11. Urquhart CJ, Hepworth JB (1997) Evaluating methodologies for assessing the value of information: shifting the evidence. Health Inf Manag 17(2):45–53

    Google Scholar 

  12. Lindberg DAB, Siegel ER (1991) On assessing the impact of medical information: does MEDLINE make a difference. Methods Inf Med 30:239–240

    PubMed  Google Scholar 

  13. Ammenwerth E, Shaw NT (2005) Bad Health Informatics can kill—is evaluation the answer? Methods Inf Med 44(1):1–3

    PubMed  Google Scholar 

  14. Leveson N (1995) Safeware: system safety and computers. Addison-Wesley, Reading, MA

  15. Davis AM, Zowghi D (2006) Good requirements practices are neither necessary nor sufficient. Requirements Eng 11:1–3

    Article  Google Scholar 

  16. Han YY, Carcillo JA, Venkataraman ST, Clark RS, Watson RS, Nguyen TC, Bayir H, Orr RA (2005) Unexpected increased mortality after implementation of a commercially sold computerized physician order entry system. Pediatrics 116(6):1506–1512

    Article  PubMed  Google Scholar 

  17. Balka E (2003) Getting the big picture: the macro-politics of information system development (and failure) in a Canadian hospital. Methods Inf Med 42(4):324–330

    PubMed  Google Scholar 

  18. Ellingsen G, Monteiro E (2003) Big is beautiful: electronic patient records in large Norwegian hospitals 1980–2001. Methods Inf Med 42(4):366–370

    PubMed  Google Scholar 

  19. Jones MR (2003) Computers can land people on Mars, why can’t they get them to work in a hospital? Implementation of an electronic patient record system in a UK hospital. Methods Inf Med 42(4):410–415

    PubMed  Google Scholar 

  20. Rector AL (1999) Clinical terminology: why is it so hard? Methods Inf Med 38:239–252

    PubMed  Google Scholar 

  21. ISO 20514 Draft technical report: EHR definition, scope and context

  22. Grain H (2005) Information systems in the new world: an emerging national approach. Aust Health Rev 29(3):292–296

    Article  PubMed  Google Scholar 

  23. Randell R (2003) Medicine and aviation: a review of the comparison. Methods Inf Med 42(4):433–436

    PubMed  Google Scholar 

  24. Blum B (1992) Software engineering: a holistic view. Oxford University Press, Oxford

  25. Weed LL, Zimny NJ (1989) The problem-oriented system, problem-knowledge coupling, and clinical decision making. Phys Ther 69(7):565–568

    PubMed  Google Scholar 

  26. Weed L, Weed L (1994) Reengineering medicine. Fed Bull 81(3)

  27. Weed LL (2004) Shedding our illusions: a better way of medicine. Fertil Steril 81 (Suppl 2):45–52

    Article  PubMed  Google Scholar 

  28. Collen ME (1995) A history of medical informatics in the United States, 1950 to 1990. Am Med Inform Assoc, Bethesda, MD

  29. Kaatsch P, Spix C, Michaelis J (2002) Annual Report 2000. German Childhood Cancer Registry, Institute for Medical Biometry, Epidemiology and Informatics, University of Mainz, Germany

  30. Henze G, Creutzig U, Herold R (2001) The medical research network pediatric oncology and hematology. Onkologie 24(S6):169

    Google Scholar 

  31. Magnani C, Gatta G, Corazziari I, Kramarova E, Pastore G, Viscomi S, Stiller C (2001) Childhood malignancies in the EUROCARE study: the database and the methods of survival analysis. Eur J Cancer 37(6):678–686

    Article  PubMed  Google Scholar 

  32. Terracini B, Coebergh JW, Gatta G, Magnani C, Stiller C, Verdecchia A, Zappone A (2001) Childhood cancer survival in Europe: an overview. Eur J Cancer 37(6):810–816

    Article  PubMed  Google Scholar 

  33. Teich JM, Schmiz JL, O’Connell EM, Fanikos J, Marks PW, Shulman LN (1996) An information system to improve the safety and efficiency of chemotherapy ordering. Proc Amia Symp:498–502

    Google Scholar 

  34. Glaser BG, Strauss AL (1967) The discovery of grounded theory: Strategies for qualitative research. Aldine Publishing Company, Chicago, Illinois

    Google Scholar 

  35. Strauss A, Corbin J (1998) Basics of qualitative research: techniques and procedures for developing grounded theory. 2nd edn Sage, Newbury Park, California

    Google Scholar 

  36. Creutzig U, Henze G (2001) Leitlinien für die Diagnostik und Therapie in der Pädiatrischen Onkologie (Guidelines for diagnostics and therapy in pediatric oncology; in German). Zuckschwerdt, München

  37. Sommerville I (2000) Software engineering. Addison Wesley, Reading, MA

  38. Arnold RS (1993) Software reengineering. IEEE Computer Society, Los Alamitos, California

    MATH  Google Scholar 

  39. Kaatsch P, Haaf G, Michaelis J (1995) Childhood malignancies in Germany—methods and results of a nationwide registry. Eur J Cancer 31A(6):993–999

    Article  PubMed  Google Scholar 

  40. Berg M (1999) Patient care information systems and health care work: a sociotechnical approach. Int J Med Inf 55(2):87–101

    Article  Google Scholar 

  41. Knaup P, Wiedemann T, Bachert A, Creutzig U, Haux R, Schilling F (2002) Efficiency and safety of chemotherapy plans for children: CATIPO—a nationwide approach. Artif Intell Med 24(3):229–242

    Article  PubMed  Google Scholar 

  42. EMEA (2002) ICH topic E6 guideline for good clinical practice, step 5 consolidated guideline 1.5.96. The European Agency for the Evaluation of Medicinal Products, http://www.emea.eu.int/pdfs/human/ich/013595en.pdf (01.10.2004)

  43. Stefanelli M (2001) The socio-organizational age of artificial intelligence in medicine. Artif Intell Med 23(1):25–47

    Article  PubMed  Google Scholar 

  44. Gutjahr P (1999) Krebs bei Kindern und Jugendlichen—Klinik und Praxis der Pädiatrischen Onkologie, (childhood and adolescent cancer—clinic and practice of pediatric oncology; in German), 4th edn. Deutscher Ärzte-Verlag, Köln

  45. Garde S, Baumgarten B, Basu O, Graf N, Haux R, Herold R, Kutscha U, Schilling F, Selle B, Spiess C, Wetter T, Knaup P (2004) A meta-model of chemotherapy planning in the multi-hospital/multi-trial-center-environment of pediatric oncology. Methods Inf Med 43(2):171–183

    PubMed  Google Scholar 

  46. Wiedemann T, Knaup P, Bachert A, Creutzig U, Haux R, Schilling F (1998) Computer-aided documentation and therapy planning in pediatric oncology. In: Cesnik B, McCray AT, J-RS (eds) Medinfo 1998. Proceedings of the ninth world congress on medical informatics. Amsterdam: IOS. pp 1306–1309

  47. Gage D, McCormick J (2004) Can software kill? ‘We did nothing wrong’. eWeek

  48. Galal GH, Paul RJ (1999) A qualitative scenario approach to managing evolving requirements. Requirements Eng 4(2):92–102

    Article  Google Scholar 

  49. Health Level 7 (2004) HL7 EHR system functional model: a major development towards consensus on electronic health record system functionality—a white paper, http://www.hl7.org/ehr/downloads/dstu/EHR-SWhitePaper.zip

  50. Garde S, Knaup P, Schuler T, Hovenga E (2005) Can open EHR archetypes empower multi-centre clinical research? Studies in health technology and informatics 116, connecting medical informatics and bio-informatics, In: Proceedings of MIE2005 (Geneva, 28–31. August 2005), pp 971–976

  51. Kauppinen M, Aaltio T, Kujala S (2002) Lessons learned from applying the requirements engineering good practice guide for process improvement. In Kontio J and Conradi R (eds) Software quality—ECSQ 2002, LNCS, pp 73–81

  52. Sommerville I, Sawyer P (1997) Requirements engineering: a good practice guide. Wiley, Chichester, Great Britain

    MATH  Google Scholar 

  53. Bjørner D (2003) Domain engineering: a “radical innovation” for software and systems engineering? A biased account. In: Dershowitz N (ed) Verification (Manna Festschrift), LNCS 2772, pp 100–144

  54. Daugulis A (2000) Time aspects in requirements engineering: or ‘every cloud has a silver lining’. Requirements Eng 5:137–142

    Article  MATH  Google Scholar 

  55. Garde S, Wolff AC, Kutscha U, Wetter T, Knaup P CSI-ISC (2006) Concepts for smooth integration of health care information system components into established processes of patient care. Methods Inf Med 45(1):10–18

    PubMed  Google Scholar 

  56. Hsia P, Davis A, Kung D (1993) Status report: requirements engineering. IEEE Softw 10(6):75–79

    Article  Google Scholar 

  57. Vimarlund V, Timpka T (2002) Design participation as an insurance: risk-management and end-user participation in the development of information systems in healthcare organizations. Methods Inf Med 41(1):76–80

    PubMed  Google Scholar 

  58. Kuhn KA, Giuse DA (2001) From hospital information systems to health information systems. Problems, challenges, perspectives. Methods Inf Med 40(4):275–287

    PubMed  Google Scholar 

  59. Beuscart-Zéphir MC, Anceaux F, Crinquette V, Renard JM (2001) Integrating user’s activity modeling in the design and assessment of hospital electronic patient records: the example of anesthesia. Int J Med Inf 64(2–3):157–171

    Article  Google Scholar 

  60. Winter A, Brigl B, Wendt T (2003) Modeling hospital information systems. Part 1: The revised three-layer graph-based meta model 3LGM2. Methods Inf Med 42(5):544–551

    PubMed  Google Scholar 

Download references

Acknowledgements

The development of DOSPO was funded by the German Leukaemia Research Aid and the German Ministry of Education and Research (bmbf) in the framework of the Competence Network Paediatric Oncology and Haematology (01 GI 9959). The authors wish to thank all persons who supported the development and introduction of DOSPO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Garde.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garde, S., Knaup, P. Requirements engineering in health care: the example of chemotherapy planning in paediatric oncology. Requirements Eng 11, 265–278 (2006). https://doi.org/10.1007/s00766-006-0029-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00766-006-0029-6

Keywords

Navigation