Skip to main content
Log in

Quantification of piperine in different varieties of Piper nigrum by a validated high-performance thin-layer chromatography‒densitometry method

  • Original Research Paper
  • Published:
JPC – Journal of Planar Chromatography – Modern TLC Aims and scope Submit manuscript

Abstract

Piperine is the most important alkaloid molecule present in Piper nigrum. In this study, a simple, rapid, quantitative high-performance thin-layer chromatography (HPTLC) technique proposed by International Organization for Standardization (ISO) was optimized and validated for the quantitative estimation of piperine in P. nigrum. Densitometric analysis of piperine was carried out in the absorbance mode at 254 nm. The method gave spot at RF = 0.63, corresponding to piperine in different samples. The limit of detection and limit of quantification per spot were confirmed with the mobile phase toluene‒ethyl acetate (3:2, V/V). Linear regression analysis data for the calibration plot for piperine showed a good linear relationship with a correlation coefficient (r2) of 0.99077 in the concentration range of 200‒1000 ng per spot. The method was validated for sensitivity, linearity, accuracy, precision and specificity as per the International Council for Harmonisation guidelines. This simple, precise and accurate HPTLC method provides a novel approach for the routine analysis of black pepper for quality control and standardization purposes, which may be further useful for industrial perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ICH:

International Council for Harmonisation

r :

Correlation coefficient

R F :

Retardation factor

HPTLC:

High-performance thin-layer chromatography

ISO:

International Organization for Standardization

LOD:

Limit of detection

LOQ:

Limit of quantification

RSD:

Relative standard deviation

LQC:

Low quality control

MQC:

Medium quality control

HQC:

High quality control

References

  1. Momin KC, Suresh CP, Singh YS, Momin BC (2018) The promising spices of North East India: India’s flavourful contribution to the world. In: Sharangi AB (ed) Indian species. Springer International Publishing AG, Berlin, pp 47–61. https://doi.org/10.1007/978-3-319-75016-3_4

    Chapter  Google Scholar 

  2. Jelen HH, Gracka A (2015) Analysis of black pepper volatiles by solid phase microextraction–gaschromatography: a comparison of terpenes profiles with hydrodistillation. J Chromatogr A 1418:200–209. https://doi.org/10.1016/j.chroma.2015.09.065

    Article  CAS  PubMed  Google Scholar 

  3. Damanhouri ZA, Ahmad A (2014) A review on therapeutic potential of Piper nigrum L. (black pepper): the king of spices. Med Aromat Plants 3:161. https://doi.org/10.4172/2167-0412.1000161

    Article  CAS  Google Scholar 

  4. Salehi B, Zakaria ZA, Gyawali R, Ibrahim SA, Rajkovic J, Shinwari ZK, Khan T, Rad JS, Ozleyen A, Turkdonmez E, Valussi M, Tumer TB, Fidalgo LM, Martorell M, Setzer WN (2019) Piper species: a comprehensive review on their phytochemistry. Biol Act Appl Mol 24:1364. https://doi.org/10.3390/molecules24071364

    Article  CAS  Google Scholar 

  5. Jagella T, Grosch W (1999) Flavour and off-flavour compounds of black and white pepper (Piper nigrum L.). Eur Food Res Technol 209:16–21. https://doi.org/10.1007/s002170050449

    Article  CAS  Google Scholar 

  6. Tasleem F, Azhar I, Ali SN, Perveen S, Mahmood ZA (2014) Analgesic and anti-inflammatory activities of Piper nigrum L. Asian Pac J Trop Med 7:S461–S468. https://doi.org/10.1016/S1995-7645(14)60275-3

    Article  Google Scholar 

  7. Grinevicius VMAS, Andrade KS, Ourique F, Micke GA, Ferreira SRS, Pedrosa RC (2017) Antitumor activity of conventional and supercritical extracts from Piper nigrum L. cultivar Bragantina through cell cycle arrest and apoptosis induction. J Supercrit Fluids 128:94–101. https://doi.org/10.1016/j.supflu.2017.05.009

    Article  CAS  Google Scholar 

  8. Tiwari A, Modi SJ, Gabhe SY, Kulkarni VM (2021) Evaluation of piperine against cancer stem cells (CSCs) of hepatocellular carcinoma: insights into epithelial–mesenchymal transition (EMT). Bioorgan Chem 110:104776. https://doi.org/10.1016/j.bioorg.2021.104776

    Article  CAS  Google Scholar 

  9. Limsuwan S, Subhadhirasakul S, Voravuthikunchai SP (2009) Medicinal plants with significant activity against important pathogenic bacteria. Pharm Biol 47(8):683–689. https://doi.org/10.1080/13880200902930415

    Article  Google Scholar 

  10. Rauscher FM, Sanders RA, Watkins JB (2000) Influence of treatment of diabetic rats with combinations of pycnogenol, beta-carotene, and alpha-lipoic acid on parameters of oxidative stress. J Biochem Mol Toxicol 18(6):345–352. https://doi.org/10.1002/jbt.20046

    Article  CAS  Google Scholar 

  11. Li S, Wang C, Li W, Koike K, Nikaido T, Wang MW (2007) Antidepressant-like effects of piperine and its derivative, antiepilepsirine. J Asian Nat Prod Res 9:421–430. https://doi.org/10.1080/10286020500384302

    Article  CAS  PubMed  Google Scholar 

  12. Rani SKS, Saxena N, Udaysree N (2013) Antimicrobial activity of black pepper (Piper nigrum L.). Global J Pharmacol 7(1):87–90. https://doi.org/10.5829/idosi.gjp.2013.7.1.1104

    Article  CAS  Google Scholar 

  13. Parmar VS, Jain SC, Bisht KS, Jain R, Taneja P, Jha A, Tyagi OD, Prasad AK, Wengel J, Olsen CE, Boll PM (1997) Phytochemistry of the genus Piper. Phytochemistry 46:597–673. https://doi.org/10.1016/S0031-9422(97)00328-2

    Article  CAS  Google Scholar 

  14. Bajad S, Bedi KL, Singla AK, Johri RK (2001) Antidiarrhoeal activity of piperine in mice. Planta Med 67(3):284–287. https://doi.org/10.1055/s-2001-11999

    Article  CAS  PubMed  Google Scholar 

  15. Deng Y, Sriwiriyajan S, Tedasen A, Hiransai P, Graidist P (2016) Anti-cancer effects of Piper nigrum via inducing multiple molecular signaling in vivo and in vitro. J Ethnopharmacol 188:87–95. https://doi.org/10.1016/j.jep.2016.04.047

    Article  CAS  PubMed  Google Scholar 

  16. Selvendiran K, Sakthisekaran D (2004) Chemopreventive effect of piperine on modulating lipid peroxidation and membrane bound enzymes in benzo(a)pyrene induced lung carcinogenesis. Biomed Pharmacother 58(4):264–267. https://doi.org/10.1016/j.biopha.2003.08.027

    Article  CAS  PubMed  Google Scholar 

  17. Mohammadi M, Najafi H, Yarijani ZM, Vaezi G, Hojati V (2020) Protective effect of piperine in ischemia-reperfusion induced acute kidney injury through inhibition of inflammation and oxidative stress. J Trad Complement Med 10(6):570–576. https://doi.org/10.1016/j.jtcme.2019.07.002

    Article  Google Scholar 

  18. Pathak N, Khandelwal S (2009) Immunomodulatory role of piperine in cadmium induced thymic atrophy and splenomegaly in mice. Environ Toxicol Pharmacol 28(1):52–60. https://doi.org/10.1016/j.etap.2009.02.003

    Article  CAS  PubMed  Google Scholar 

  19. Zhu F, Mojel R, Li G (2018) Physicochemical properties of blackpepper (Piper nigrum) starch. Carbohydr Polym 181:986–993. https://doi.org/10.1016/j.carbpol.2017.11.051

    Article  CAS  PubMed  Google Scholar 

  20. Hazra AK, Chakraborty B, Mitra A, Sur TK (2019) A rapid HPTLC method to estimate piperine in Ayurvedic formulations. J Ayurveda Integr Med 10(4):248–254. https://doi.org/10.1016/j.jaim.2017.07.006

    Article  PubMed  Google Scholar 

  21. Lupina T, Cripps H (1987) UV spectrophotometric determination of piperine in pepper preparations: collaborative study. J Assoc Off Anal Chem 70(1):112–113

    CAS  PubMed  Google Scholar 

  22. Noyer BI, Fayet I, Sonaglia P, Guerere M, Lesgard J (1999) Quantitative analysis of pungent principles of pepper oleoresins: comparative study of three analytical methods. Analusis 27:69–74. https://doi.org/10.1051/analusis:1999109

    Article  CAS  Google Scholar 

  23. Harwansh RK, Mukherjee K, Bhadra S, Kar A, Bahadur S, Mitra A, Mukherjee PK (2014) Cytochrome P450 inhibitory potential and RP-HPLC standardization of trikatu—a Rasayana from Indian Ayurveda. J Ethnopharmacol 153(3):674–681. https://doi.org/10.1016/j.jep.2014.03.023

    Article  CAS  PubMed  Google Scholar 

  24. Gorgani L, Mohammadi M, Najafpour GD, Nikzad M (2016) Piperine—the bioactive compound of black pepper: from isolation to medicinal formulations. Compr Rev Food Sci Food Saf 16:124–140. https://doi.org/10.1111/1541-4337.12246

    Article  CAS  PubMed  Google Scholar 

  25. Mukherjee PK, Bahadur S, Chaudhary SK, Kar A, Mukherjee K (2015) Quality related safety issue-evidence-based validation of herbal medicine farm to pharma. In: Mukherjee PK (ed) Evidence-based validation of herbal medicine. Elsevier, Amsterdam, pp 1–28

    Google Scholar 

  26. Biswas S, Mukherjee PK (2019) Validated high-performance thin-layer chromatographic–densitometric method for the isolation and standardization of ayapanin in Ayapana triplinervis. J Planar Chromatogr 32:41–46. https://doi.org/10.1556/1006.2019.32.1.5

    Article  CAS  Google Scholar 

  27. Pandit S, Mukherjee PK, Gantait A, Ponnusankar S, Bhadra S (2011) Quantification of α-asarone in Acorus calamus by validated HPTLC densitometric method. J Planar Chromatogr 24:541–544. https://doi.org/10.1556/JPC.24.2011.6.17

    Article  CAS  Google Scholar 

  28. Gantait A, Maji A, Barman T, Banerjee P, Venkatesh P, Mukherjee PK (2012) Estimation of capsaicin through scanning densitometry and evaluation of different varieties of capsicum in India. Nat Prod Res 26:216–222. https://doi.org/10.1080/14786419.2010.535169

    Article  CAS  PubMed  Google Scholar 

  29. Kumar V, Mukherjee K, Kumar S, Mal M, Mukherjee PK (2007) Validation of HPTLC method for the analysis of taraxerol in Clitoria ternatea. Phytochem Anal 19:244–250. https://doi.org/10.1002/pca.1042

    Article  CAS  Google Scholar 

  30. ICH Validation of analytical procedures: text and methodology, Q2 (R1) (2005) International Conference on Harmonization, Geneva. https://database.ich.org/sites/default/files/Q2_R1_Guideline.pdf. Accessed 22 Jan 2020

Download references

Acknowledgements

The authors are thankful to the National Medicinal Plant Board, Grant Number: F.No.Z.18017/187/CSS/R&D/WB-02/2017-18-NMPB-IV A, Ministry of AYUSH for financial support. The authors are also thankful to the Institute of Bioresources and Sustainable Development, an autonomous institute under Dept. of Biotechnology (DBT), Govt. of India, Imphal, India, for necessary help and support through IBSD-JU joint collaboration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pulok K. Mukherjee.

Ethics declarations

Conflict of interest

The author declares that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jana, S.N., Sing, D., Banerjee, S. et al. Quantification of piperine in different varieties of Piper nigrum by a validated high-performance thin-layer chromatography‒densitometry method. JPC-J Planar Chromat 34, 521–530 (2021). https://doi.org/10.1007/s00764-021-00149-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00764-021-00149-x

Keywords

Navigation