Skip to main content
Log in

Neues aus Pathologie und Pathophysiologie des Hodgkin-Lymphoms

Update on the pathology and pathophysiology of Hodgkin lymphoma

  • Leitthema
  • Published:
Die Onkologie Aims and scope

Zusammenfassung

Hintergrund

Die letzten Jahre ergaben neue Einblicke in die Pathomechanismen der Tumorzellen des Hodgkin-Lymphoms, aber auch in die Bedeutung des Begleitinfiltrats.

Fragestellung

Das Ziel der Übersichtsarbeit ist die Darstellung neuer Erkenntnisse über die Pathobiologie von Hodgkin-Lymphomen in den letzten Jahren.

Material und Methoden

Es erfolgte eine selektive Literaturrecherche unter Berücksichtigung eigener Erfahrungen als Forschende auf dem Gebiet der Hodgkin-Lymphome.

Ergebnisse

Molekulare Eigenschaften der neoplastischen Zellen zeigen eine gestörte Interaktion mit dem Immunsystem. Das ausgeprägte Begleitinfiltrat benigner Zellen eröffnet Möglichkeiten in der Immuncheckpointtherapie. Die Wirkmechanismen dieser Therapie beim Hodgkin-Lymphom scheinen sich jedoch von den Mechanismen in anderen Tumorentitäten zu unterscheiden.

Schlussfolgerungen

Das Begleitinfiltrat benigner Immunzellen stellen eine therapeutische Zielstruktur dar, obwohl die Wirkmechanismen eine Immuncheckpointtherapie im Hodgkin-Lymphom unzureichend verstanden sind. Die pathologische Diagnostik und wird durch neueste Erkenntnisse noch nicht beeinflusst; prognostische oder prädiktive Biomarker aus dem Begleitinfiltrat stehen derzeit noch nicht zur Verfügung.

Abstract

Background

In recent years, there have been new insights into the pathomechanisms of the tumor cells in Hodgkin lymphoma, but also into the importance of the accompanying infiltrate.

Objectives

The aim of the review article is the presentation of recent developments in the pathobiology of Hodgkin lymphomas.

Materials and methods

We conducted a selective literature review, taking into account our own experience as researchers in the field of Hodgkin lymphomas.

Results

Molecular features of neoplastic cells indicate a disturbed interaction with the immune system. The abundant microenvironment provides opportunities in immune checkpoint therapy. However, the mechanisms of action of this therapy in Hodgkin lymphoma seem to differ from mechanisms in other tumor entities.

Conclusions

The concomitant infiltrate of benign immune cells represents a therapeutic target structure, although the mechanisms of action of immune checkpoint therapy in Hodgkin’s lymphoma are poorly understood. The pathological diagnosis is not yet influenced by recent findings. Unfortunately, prognostic or predictive biomarkers based on microenvironment analysis are not yet available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. International Agency for Reaserch on Cancer (2018) WHO classification of tumors of haematopoietic and lymphoid tissues, 4. Aufl.

    Google Scholar 

  2. Campo E, Jaffe ES (2021) Taking gray zone lymphomas out of the shadows. Blood 137(13):1703–1704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Nicolae A et al (2013) Peripheral T‑cell lymphomas of follicular T‑helper cell derivation with Hodgkin/Reed-Sternberg cells of B‑cell lineage: both EBV-positive and EBV-negative variants exist. Am J Surg Pathol 37(6):816–826. https://doi.org/10.1097/PAS.0b013e3182785610

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kanzler H et al (1996) Hodgkin and Reed-Sternberg cells in Hodgkin’s disease represent the outgrowth of a dominant tumor clone derived from (crippled) germinal center B cells. J Exp Med 184(4):1495–1505

    Article  CAS  PubMed  Google Scholar 

  5. Marafioti T et al (2000) Hodgkin and reed-sternberg cells represent an expansion of a single clone originating from a germinal center B‑cell with functional immunoglobulin gene rearrangements but defective immunoglobulin transcription. Blood 95(4):1443–1450

    Article  CAS  PubMed  Google Scholar 

  6. Schwering I et al (2003) Loss of the B‑lineage-specific gene expression program in Hodgkin and Reed-Sternberg cells of Hodgkin lymphoma. Blood 101(4):1505–1512

    Article  CAS  PubMed  Google Scholar 

  7. Joos S et al (2002) Classical Hodgkin lymphoma is characterized by recurrent copy number gains of the short arm of chromosome 2. Blood 99(4):1381–1387

    Article  CAS  PubMed  Google Scholar 

  8. Martin-Subero JI et al (2002) Recurrent involvement of the REL and BCL11A loci in classical Hodgkin lymphoma. Blood 99(4):1474–1477

    Article  CAS  PubMed  Google Scholar 

  9. Green MR et al (2010) Integrative analysis reveals selective 9p24.1 amplification, increased PD‑1 ligand expression, and further induction via JAK2 in nodular sclerosing Hodgkin lymphoma and primary mediastinal large B‑cell lymphoma. Blood 116(17):3268–3277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Roemer MG et al (2016) PD-L1 and PD-L2 genetic alterations define classical Hodgkin lymphoma and predict outcome. J Clin Oncol 34(23):2690–2697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wienand K et al (2019) Genomic analyses of flow-sorted Hodgkin Reed-Sternberg cells reveal complementary mechanisms of immune evasion. Blood Adv 3(23):4065–4080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Weniger MA, Kuppers R (2021) Molecular biology of Hodgkin lymphoma. Leukemia 35(4):968–981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Reichel J et al (2015) Flow sorting and exome sequencing reveal the oncogenome of primary Hodgkin and Reed-Sternberg cells. Blood 125(7):1061–1072

    Article  CAS  PubMed  Google Scholar 

  14. Weniger MA, Kuppers R (2016) NF-kappaB deregulation in Hodgkin lymphoma. Semin Cancer Biol 39:32–39

    Article  CAS  PubMed  Google Scholar 

  15. Tiacci E et al (2018) Pervasive mutations of JAK-STAT pathway genes in classical Hodgkin lymphoma. Blood 131(22):2454–2465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kapatai G, Murray P (2007) Contribution of the Epstein Barr virus to the molecular pathogenesis of Hodgkin lymphoma. J Clin Pathol 60(12):1342–1349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Murray P, Bell A (2015) Contribution of the Epstein-Barr virus to the pathogenesis of Hodgkin lymphoma. Curr Top Microbiol Immunol 390(1):287–313

    CAS  PubMed  Google Scholar 

  18. Montgomery ND et al (2016) Karyotypic abnormalities associated with Epstein-Barr virus status in classical Hodgkin lymphoma. Cancer Genet 209(9):408–416

    Article  CAS  PubMed  Google Scholar 

  19. Schmitz R et al (2009) TNFAIP3 (A20) is a tumor suppressor gene in Hodgkin lymphoma and primary mediastinal B cell lymphoma. J Exp Med 206(5):981–989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liu D et al (2019) Integrative molecular and clinical modeling of clinical outcomes to PD1 blockade in patients with metastatic melanoma. Nat Med 25(12):1916–1927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ansell SM et al (2015) PD‑1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N Engl J Med 372(4):311–319

    Article  PubMed  Google Scholar 

  22. Nijland M et al (2017) HLA dependent immune escape mechanisms in B‑cell lymphomas: implications for immune checkpoint inhibitor therapy? OncoImmunology 6(4):e1295202

    Article  PubMed  PubMed Central  Google Scholar 

  23. Cader FZ et al (2018) Mass cytometry of Hodgkin lymphoma reveals a CD4(+) regulatory T‑cell-rich and exhausted T‑effector microenvironment. Blood 132(8):825–836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Aoki T et al (2020) Single-cell transcriptome analysis reveals disease-defining T‑cell subsets in the tumor microenvironment of classic Hodgkin lymphoma. Cancer Discov 10(3):406–421

    Article  PubMed  Google Scholar 

  25. Patel SS et al (2019) The microenvironmental niche in classic Hodgkin lymphoma is enriched for CTLA-4-positive T cells that are PD-1-negative. Blood 134(23):2059–2069

    PubMed  PubMed Central  Google Scholar 

  26. Cader FZ et al (2020) A peripheral immune signature of responsiveness to PD‑1 blockade in patients with classical Hodgkin lymphoma. Nat Med 26(9):1468–1479

    Article  CAS  PubMed  Google Scholar 

  27. Roemer MGM et al (2018) Major histocompatibility complex class II and programmed death ligand 1 expression predict outcome after programmed death 1 blockade in classic Hodgkin lymphoma. J Clin Oncol 36(10):942–950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Brockelmann PJ et al (2020) Efficacy of nivolumab and AVD in early-stage unfavorable classic Hodgkin lymphoma: the randomized phase 2 German Hodgkin study group NIVAHL trial. JAMA Oncol 6(6):872–880

    Article  PubMed  Google Scholar 

  29. Reinke S et al (2020) Tumor and microenvironment response but no cytotoxic T‑cell activation in classic Hodgkin lymphoma treated with anti-PD1. Blood 136(25):2851–2863

    Article  PubMed  Google Scholar 

  30. Gerhard-Hartmann E et al (2022) 9p24.1 alterations and programmed cell death 1 ligand 1 expression in early stage unfavourable classical Hodgkin lymphoma: an analysis from the German Hodgkin study group NIVAHL trial. Br J Haematol 196(1):116–126. https://doi.org/10.1111/bjh.17793

    Article  CAS  PubMed  Google Scholar 

  31. Jachimowicz RD et al (2021) Whole-slide image analysis of the tumor microenvironment identifies low B‑cell content as a predictor of adverse outcome in patients with advanced-stage classical Hodgkin lymphoma treated with BEACOPP. Haematologica 106(6):1684–1692

    Article  CAS  PubMed  Google Scholar 

  32. Karihtala K et al (2022) Checkpoint protein expression in the tumor microenvironment defines the outcome of classical Hodgkin lymphoma patients. Blood Adv 6(6):1919–1931. https://doi.org/10.1182/bloodadvances.2021006189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Greaves P et al (2013) Defining characteristics of classical Hodgkin lymphoma microenvironment T‑helper cells. Blood 122(16):2856–2863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Das M, Zhu C, Kuchroo VK (2017) Tim‑3 and its role in regulating anti-tumor immunity. Immunol Rev 276(1):97–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. El Halabi L et al (2021) Expression of the immune checkpoint regulators LAG‑3 and TIM‑3 in classical Hodgkin lymphoma. Clin Lymphoma Myeloma Leuk 21(4):257–266.e3

    Article  PubMed  Google Scholar 

  36. Roemer MG et al (2016) Classical Hodgkin lymphoma with reduced β2M/MHC class I expression is associated with inferior outcome independent of 9p24.1 status. Cancer Immunol Res 4(11):910–916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Diepstra A et al (2005) Association with HLA class I in Epstein-Barr-virus-positive and with HLA class III in Epstein-Barr-virus-negative Hodgkin’s lymphoma. Lancet 365(9478):2216–2224

    Article  CAS  PubMed  Google Scholar 

  38. McAulay KA, Jarrett RF (2015) Human leukocyte antigens and genetic susceptibility to lymphoma. Tissue Antigens 86(2):98–113

    Article  CAS  PubMed  Google Scholar 

  39. Diepstra A et al (2007) HLA class II expression by Hodgkin Reed-Sternberg cells is an independent prognostic factor in classical Hodgkin’s lymphoma. J Clin Oncol 25(21):3101–3108

    Article  PubMed  Google Scholar 

  40. Nagasaki J et al (2020) The critical role of CD4+ T cells in PD‑1 blockade against MHC-II-expressing tumors such as classic Hodgkin lymphoma. Blood Adv 4(17):4069–4082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Long L et al (2018) The promising immune checkpoint LAG-3: from tumor microenvironment to cancer immunotherapy. Genes Cancer 9(5-6):176–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kraman M et al (2020) FS118, a bispecific antibody targeting LAG‑3 and PD-L1, enhances T‑cell activation resulting in potent antitumor activity. Clin Cancer Res 26(13):3333–3344

    Article  CAS  PubMed  Google Scholar 

  43. Schuhmacher B et al (2019) JUNB, DUSP2, SGK1, SOCS1 and CREBBP are frequently mutated in T‑cell/histiocyte-rich large B‑cell lymphoma. Haematologica 104(2):330–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Al-Mansour M et al (2010) Transformation to aggressive lymphoma in nodular lymphocyte-predominant Hodgkin’s lymphoma. J Clin Oncol 28(5):793–799

    Article  PubMed  Google Scholar 

  45. Fan Z et al (2003) Characterization of variant patterns of nodular lymphocyte predominant hodgkin lymphoma with immunohistologic and clinical correlation. Am J Surg Pathol 27(10):1346–1356

    Article  PubMed  Google Scholar 

  46. Hartmann S et al (2013) The prognostic impact of variant histology in nodular lymphocyte-predominant Hodgkin lymphoma: a report from the German Hodgkin study group (GHSG). Blood 122(26):4246–4252 (quiz 4292)

    Article  CAS  PubMed  Google Scholar 

  47. Hartmann S et al (2019) The time to relapse correlates with the histopathological growth pattern in nodular lymphocyte predominant Hodgkin lymphoma. Am J Hematol 94(11):1208–1213

    Article  PubMed  Google Scholar 

  48. Kuppers R et al (1994) Hodgkin disease: Hodgkin and Reed-Sternberg cells picked from histological sections show clonal immunoglobulin gene rearrangements and appear to be derived from B cells at various stages of development. Proc Natl Acad Sci U S A 91(23):10962–10966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Braeuninger A et al (1997) Hodgkin and Reed-Sternberg cells in lymphocyte predominant Hodgkin disease represent clonal populations of germinal center-derived tumor B cells. Proc Natl Acad Sci U S A 94(17):9337–9342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Brune V et al (2008) Origin and pathogenesis of nodular lymphocyte-predominant Hodgkin lymphoma as revealed by global gene expression analysis. J Exp Med 205(10):2251–2268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mottok A et al (2007) Somatic hypermutation of SOCS1 in lymphocyte-predominant Hodgkin lymphoma is accompanied by high JAK2 expression and activation of STAT6. Blood 110(9):3387–3390

    Article  CAS  PubMed  Google Scholar 

  52. Bakhirev AG et al (2014) Fluorescence immunophenotyping and interphase cytogenetics (FICTION) detects BCL6 abnormalities, including gene amplification, in most cases of nodular lymphocyte-predominant Hodgkin lymphoma. Arch Pathol Lab Med 138(4):538–542

    Article  PubMed  Google Scholar 

  53. Renne C et al (2005) Molecular cytogenetic analyses of immunoglobulin loci in nodular lymphocyte predominant Hodgkin’s lymphoma reveal a recurrent IGH-BCL6 juxtaposition. J Mol Diagn 7(3):352–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wlodarska I et al (2003) Frequent occurrence of BCL6 rearrangements in nodular lymphocyte predominance Hodgkin lymphoma but not in classical Hodgkin lymphoma. Blood 101(2):706–710

    Article  CAS  PubMed  Google Scholar 

  55. Huppmann AR et al (2014) EBV may be expressed in the LP cells of nodular lymphocyte-predominant Hodgkin lymphoma (NLPHL) in both children and adults. Am J Surg Pathol 38(3):316–324

    Article  PubMed  PubMed Central  Google Scholar 

  56. Paschold L et al (2021) Evolutionary clonal trajectories in nodular lymphocyte-predominant Hodgkin lymphoma with high risk of transformation. Haematologica 106(10):2654–2666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Thurner L et al (2020) Lymphocyte predominant cells detect moraxella catarrhalis-derived antigens in nodular lymphocyte-predominant Hodgkin lymphoma. Nat Commun 11(1):2465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfram Klapper.

Ethics declarations

Interessenkonflikt

E. Gerhard-Hartmann, S. Reinke, A. Rosenwald und W. Klapper geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gerhard-Hartmann, E., Reinke, S., Rosenwald, A. et al. Neues aus Pathologie und Pathophysiologie des Hodgkin-Lymphoms. Onkologie 28, 862–871 (2022). https://doi.org/10.1007/s00761-022-01155-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00761-022-01155-2

Schlüsselwörter

Keywords

Navigation