Skip to main content

Advertisement

Log in

Intracellular sources of ornithine for polyamine synthesis in endothelial cells

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Polyamines are essential for proliferation of endothelial cells (EC) and angiogenesis. This study was conducted to identify the metabolic source(s) of ornithine for polyamine synthesis in EC, using Nω-hydroxy-nor-l-arginine (Nor-NOHA, an inhibitor of arginase) and gabaculine (an inhibitor of ornithine aminotransferase; OAT). Nor-NOHA inhibited arginase with an IC50 value of 10 µM for intact EC. Nor-NOHA (0.5 mM) alone inhibited arginase activity in EC by 98 %, increased total cellular concentrations of arginine by 14 %, and decreased total cellular concentrations of ornithine, putrescine and spermidine by 17, 65 and 74 %, respectively. Arginine and glutamine contributed to 73 and 26 % of the ornithine produced by EC, respectively. Gabaculine (1 mM) alone decreased the total cellular concentrations of arginine, ornithine, putrescine, and spermidine by 14, 96, 32, and 42 %, respectively. A combination of both Nor-NOHA and gabaculine completely blocked ornithine production in EC, resulting in no detectable cellular ornithine and almost complete depletion of cellular putrescine and spermidine. Addition of 0.5 mM ornithine restored the intracellular concentrations of polyamines in EC treated with Nor-NOHA plus gabaculine, indicating that Nor-NOHA and gabaculine did not inhibit ornithine decarboxylase activity. Our results suggest that the arginase and OAT pathways are the exclusive sources of ornithine in EC when there is little extracellular ornithine and that there is intracellular compartmentalization of arginine and ornithine for endothelial synthesis of polyamines.  These novel findings may have important implications for improving placental vascular growth, wound healing, and cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

EC:

Endothelial cells

Nor-NOHA:

Nω-hydroxy-nor-l-arginine

ODC:

Ornithine decarboxylase

OAT:

Ornithine aminotransferase

P5C:

Pyrroline-5-carboxylate

References

  • Agostinelli E (2014) Polyamines and transglutaminases: biological, clinical, and biotechnological perspectives. Amino Acids 46:475–485

    Article  CAS  PubMed  Google Scholar 

  • Assaad H, Zhou L, Carroll RJ, Wu G (2014) Rapid publication-ready MS-Word tables for one-way ANOVA. Springerplus 3:474

    Article  PubMed  PubMed Central  Google Scholar 

  • Bazer FW, Johnson GA, Wu G (2015) Amino acids and conceptus development during the peri-implantation period of pregnancy. Adv Exp Med Biol 843:23–52

    Article  PubMed  Google Scholar 

  • Buga GM, Singh R, Pervin S, Rogers NE, Schmitz DA, Jenkinson CP, Cederbaum SD, Ignarro LJ (1996) Arginase activity in endothelial cells: inhibition by NG-hydroxy-l-arginine during high-output NO production. Am J Physiol 271:H1988–H1998

    CAS  PubMed  Google Scholar 

  • Custot J, Moali C, Brollo M, Boucher JL, Delaforge M, Mansuy D, Tenu JP, Zimmermann JL (1997) The new α-amino acid Nω-hydroxyl-nor-l-arginine: a high affinity inhibitor of arginase well adapted to bind to its manganese cluster. J Am Chem Soc 119:4086–4087

    Article  CAS  Google Scholar 

  • Dai ZL, Wu ZL, Wang JJ, Wang XQ, Jia SC, Bazer FW, Wu G (2014) Analysis of polyamines in biological samples by HPLC involving pre-column derivatization with o-phthalaldehyde and N-acetyl-l-cysteine. Amino Acids 46:1557–1564

    Article  CAS  PubMed  Google Scholar 

  • Dekaney CM, Wu G, Jaeger LA (2000) Regulation and function of ornithine aminotransferase in animals. Trends Comp Biochem Physiol 6:175–183

    CAS  Google Scholar 

  • Flynn NE, Wu G (1996) An important role for endogenous synthesis of arginine in maintaining arginine homeostasis in neonatal pigs. Am J Physiol 271:R1149–R1155

    CAS  PubMed  Google Scholar 

  • Heby O (1980) Role of polyamines in the control of cell proliferation and differentiation. Differentiation 19:1–20

    Article  Google Scholar 

  • Holtta E, Pohjanpelto P (1982) Polyamine dependence of Chinese hamster ovary cells in serum-free culture is due to deficient arginase activity. Biochim Biophys Acta 721:321–327

    Article  CAS  PubMed  Google Scholar 

  • Hu SD, Li XL, Rezaei R, Meininger CJ, McNeal CJ, Wu G (2015) Safety of long-term dietary supplementation with l-arginine in pigs. Amino Acids 47:925–936

    Article  CAS  PubMed  Google Scholar 

  • Ignarro LJ, Buga GM, Wei LH, Bauer PM, Wu G, Del Soldato P (2001) Role of the arginine-nitric oxide pathway in the regulation of vascular smooth muscle cell proliferation. Proc Natl Acad Sci USA 98:4202–4208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiao N, Wu ZL, Ji Y, Wang B, Dai ZL, Wu G (2015) l-Glutamate enhances barrier and anti-oxidative functions in intestinal porcine epithelial cells. J Nutr 145:2258–2264

    Article  CAS  PubMed  Google Scholar 

  • Kepka-Lenhart D, Mistry SK, Wu G, Morris SM (2000) Arginase I: a limiting factor for nitric oxide and polyamine synthesis by activated macrophages? Am J Physiol 279:R2237–R2242

    CAS  Google Scholar 

  • Li H, Meininger CJ, Hawker JR Jr, Haynes TE, Kepka-Lenhart D, Mistry SK, Morris SM Jr, Wu G (2001) Regulatory role of arginase I and II in nitric oxide, polyamine, and proline syntheses in endothelial cells. Am J Physiol 280:E75–E82

    CAS  Google Scholar 

  • Li H, Meininger CJ, Hawker JR Jr, Kelly KA, Morris SM Jr, Wu G (2002) Activities of arginase I and II are limiting for endothelial cell proliferation. Am J Physiol 282:R64–R69

    CAS  Google Scholar 

  • Morris SM Jr (1999) Arginine synthesis, metabolism, and transport: regulators of nitric oxide synthesis. In: Laskin JD, Laskin DL (eds) Cellular and molecular biology of nitric oxide. Marcel Dekker Inc, New York, pp 57–85

    Google Scholar 

  • Morris SM Jr, Bhamidipati D, Kepka-Lenhart D (1997) Human type II arginase: sequence analysis and tissue-specific expression. Gene 193:157–161

    Article  CAS  PubMed  Google Scholar 

  • Morrison RF, Seidel ER (1995) Vascular endothelial cell proliferation: regulation of cellular polyamines. Cardiovasc Res 29:841–847

    Article  CAS  PubMed  Google Scholar 

  • Pegg AE (1986) Recent advances in the biochemistry of polyamines in eukaryotes. Biochem J 234:249–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi O, Kepka-Lenhart D, Morris SM Jr, O’Brien WE (1998) Structure of the murine arginase II gene. Mamm Genome 9:822–824

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Pervin S, Karimi A, Cederbaum S, Chaudhuri G (2000) Arginase activity in human breast cancer cell lines: Nω-hydroxyl-l-arginine selectively inhibits cell proliferation and induces apoptosis in MDA-MB-468 cells. Cancer Res 60:3305–3312

    CAS  PubMed  Google Scholar 

  • Steel RGD, Torrie JH (1980) Principles and procedures of statistics. McGraw-Hill, New York

    Google Scholar 

  • Tenu JP, Lepoivre M, Moali C, Brollo M, Mansuy D, Boucher JL (1999) Effects of the new arginase inhibitor Nω-hydroxy-nor-l-arginine on NO synthase in murine macrophages. Nitric Oxide 3:427–438

    Article  CAS  PubMed  Google Scholar 

  • Wallace HM (2000) The physiological role of the polyamines. Eur J Clin Invest 30:1–3

    Article  CAS  PubMed  Google Scholar 

  • Wang WW, Wu ZL, Dai ZL, Yang Y, Wang JJ, Wu G (2013) Glycine metabolism in animals and humans: implications for nutrition and health. Amino Acids 45:463–477

    Article  PubMed  Google Scholar 

  • Wang XQ, Ying W, Dunlap KA, Lin G, Satterfield MC, Burghardt RC, Wu G, Bazer FW (2014) Arginine decarboxylase and agmatinase: an alternative pathway for de novo biosynthesis of polyamines for development of mammalian conceptuses. Biol Reprod 90(84):1–15

    Google Scholar 

  • Wu G (1995) Urea synthesis in enterocytes of developing pigs. Biochem J 312:717–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu G (2013) Amino acids: biochemistry and nutrition. CRC Press, Boca Raton

    Book  Google Scholar 

  • Wu G, Flynn NE (1993) The activation of the arginine-citrulline cycle in macrophages from the spontaneously diabetic BB rat. Biochem J 294:113–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu G, Meininger CJ (1993) Regulation of l-arginine synthesis from L-citrulline by l-glutamine in endothelial cells. Am J Physiol 265:H1965–H1971

    CAS  PubMed  Google Scholar 

  • Wu G, Meininger CJ (1995) Impaired arginine metabolism and NO synthesis in coronary endothelial cells of the spontaneously diabetic BB rat. Am J Physiol Heart Circ Physiol 269:H1312–H1318

    CAS  Google Scholar 

  • Wu G, Meininger CJ (2008) Analysis of citrulline, arginine, and methylarginines using high-performance liquid chromatography. Methods Enzymol 440:177–189

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Morris SM Jr (1998) Arginine metabolism: nitric oxide and beyond. Biochem J 336:1–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu G, Thompson JR, Baracos VE (1991) Glutamine metabolism in skeletal muscle from the broiler chick (Gallus domesticus) and the laboratory rat (Rattus norvegicus). Biochem J 274:769–774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu G, Knabe DA, Flynn NE, Yan W, Flynn SP (1996) Arginine degradation in developing porcine enterocytes. Am J Physiol Gastrointest Liver Physiol 271:G913–G919

    CAS  Google Scholar 

  • Wu G, Pond WG, Flynn SP, Ott TL, Bazer FW (1998) Maternal dietary protein deficiency decreases nitric oxide synthase and ornithine decarboxylase activities in placenta and endometrium of pigs during early gestation. J Nutr 128:2395–2402

    CAS  PubMed  Google Scholar 

  • Wu G, Flynn NE, Knabe DA (2000a) Enhanced intestinal synthesis of polyamines from proline in cortisol-treated piglets. Am J Physiol 279:E395–E402

    CAS  Google Scholar 

  • Wu G, Flynn NE, Knabe DA, Jaeger L (2000b) A cortisol surge mediates the enhanced polyamine synthesis in porcine enterocytes during weaning. Am J Physiol 279:R554–R559

    CAS  Google Scholar 

  • Wu G, Haynes TE, Li H, Meininger CJ (2000c) Glutamine metabolism in endothelial cells: ornithine synthesis from glutamine via pyrroline-5-carboxylate synthase. Comp Biochem Biophys A 126:115–123

    CAS  Google Scholar 

  • Wu G, Bazer FW, Davis TA, Kim SW, Li P, Rhoads JM, Satterfield MC, Smith SB, Spencer TE, Yin YL (2009) Arginine metabolism and nutrition in growth, health and disease. Amino Acids 37:153–168

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Wu ZL, Meininger CJ, Wu G (2015) l-Leucine and NO-mediated cardiovascular function. Amino Acids 47:435–447

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported, in part, by Agriculture and Food Research Initiative Competitive Grants of (2015-67015-23276) of the USDA National Institute of Food and Agriculture, American Heart Association (10GRNT4480020 and 11GRNT7930004), and Texas A&M AgriLife Research (H-82000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoyao Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics statement

This study involved the cultures of an existing cell line and did not require an Animal Use Protocol.

Additional information

Handling Editor: E. Agostinelli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Meininger, C.J., Bazer, F.W. et al. Intracellular sources of ornithine for polyamine synthesis in endothelial cells. Amino Acids 48, 2401–2410 (2016). https://doi.org/10.1007/s00726-016-2256-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-016-2256-6

Keywords

Navigation