Skip to main content
Log in

Molecular mechanism underlying the cerebral effect of Gly-Pro-Glu tripeptide bound to l-dopa in a Parkinson’s animal model

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Oxidative stress is a critical contributing factor to neurodegenerative disorders. Therefore, the inhibition of ROS formation, responsible for chronic detrimental neuroinflammation, is an important strategy for preventing the neurodegenerative disease and for neuroprotective therapy. Gly-Pro-Glu (GPE) is the N-terminal tripeptide of insulin-like growth factor-I, which is naturally cleaved in the plasma and brain tissues. GPE has neuroprotective effects since it crosses the blood–CSF and the functional CSF–brain barriers and binds to glial cells. It has been shown that GPE improves motor behaviour in rats after 6-OHDA lesion, although it does not rescue dopaminergic neurons. Thus, we hypothesized that the GPE therapeutic efficacy in a Parkinson model might be improved by combining GPE to l-dopa. Here, we used an animal model that represents a progressive chronic Parkinson’s disease (PD) model, characterized by high levels of oxidative stress and inflammation. We showed that the co-drug, in which l-dopa is covalently linked to the GPE tripeptide, by down-regulating the expression of inflammatory genes, decreases the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced inflammatory response and, by up-regulating tyrosine hydroxylase, reduces MPTP-induced neurotoxicity. Furthermore, by determining the nuclear translocation/activation of Nrf2 and NF-κB, we showed that systemic administration of the co-drug activates Nrf2-induced antioxidant response while suppressing NF-κB inflammatory pathway. Data suggest that the binding of l-dopa to GPE tripeptide might represent a promising strategy to supply l-dopa to parkinsonian patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1

Similar content being viewed by others

References

  • Aguado-Llera D, Martín-Martínez M, García-López MT, Arilla-Ferreiro E, Barrios V (2004) Gly-Pro-Glu protects beta-amyloid-induced somatostatin depletion in the rat cortex. Neuroreport 15:1979–1982

    Article  PubMed  CAS  Google Scholar 

  • Alexi T, Hughes PE, van Roon-Mom WM, Faull RL, Williams CE, Clark RG, Gluckman PD (1999) The IGF-I amino-terminal tripeptide glycine-proline-glutamate (GPE) is neuroprotective to striatum in the quinolinic acid lesion animal model of Huntington’s disease. Exp Neurol 159:84–97

    Article  PubMed  CAS  Google Scholar 

  • Andrews ZB, Horvath B, Barnstable CJ, Elsworth J, Yang L, Beal MF, Roth RH, Matthews RT, Horvath TL (2005) Uncoupling protein-2 is critical for nigral dopamine cell survival in a mouse model of Parkinson’s disease. J Neurosci 25:184–191

    Article  PubMed  CAS  Google Scholar 

  • Baker AM, Batchelor DC, Thomas GB, Wen JY, Rafiee M, Lin H, Guan J (2005) Central penetration and stability of N-terminal tripeptide of insulin-like growth factor-I, glycine–proline–glutamate in adult rat. Neuropeptides 39:81–87

    Article  PubMed  CAS  Google Scholar 

  • Batchelor DC, Lin H, Wen JY, Keven C, Van Zijl PL, Breier BH, Gluckman PD, Thomas GB (2003) Pharmacokinetics of glycine–proline–glutamate, the N-terminal tripeptide of insulin-like growth factor-1, in rats. Anal Biochem 323:156–163

    Article  PubMed  CAS  Google Scholar 

  • Bezard E, Dovero S, Bioulac B, Gross CE (1997a) Effects of different schedules of MPTP administration on dopaminergic neurodegeneration in mice. Exp Neurol 148:288–292

    Article  PubMed  CAS  Google Scholar 

  • Bezard E, Dovero S, Bioulac B, Gross CE (1997b) Kinetics of nigral degeneration in a chronic model of MPTP-treated mice. Neurosci Lett 234:47–50

    Article  PubMed  CAS  Google Scholar 

  • Bodor N, Sloan KB, Higuchi T, Sasahara K (1977) Improved delivery through biological membranes. 4 Prodrugs of l-dopa. J Med Chem 20:1435–1445

    Article  PubMed  CAS  Google Scholar 

  • Branco DM, Arduino DM, Esteves AR, Silva DF, Cardoso SM, Oliveira CR (2010) Cross-talk between mitochondria and proteasome in Parkinson’s disease pathogenesis. Front Aging Neurosci 2:17. doi:10.3389/fnagi.2010.00017

    PubMed  CAS  Google Scholar 

  • Brigelius-Flohe R, Flohé L (2011) Basic principles and emerging concepts in the redox control of transcription factors. Antioxid Redox Signal. doi:10.1089/ars.2010.3534

  • Brimble MA, Trotter NS, Harris PW, Sieg F (2005) Synthesis and pharmacological evaluation of side chain modified glutamic acid analogues of the neuroprotective agent glycyl-l-prolyl-l-glutamic acid (GPE). Bioorg Med Chem 13:519–532

    Article  PubMed  CAS  Google Scholar 

  • Burgos-Ramos E, Martos-Moreno GA, López MG, Herranz R, Aguado-Llera D, Egea J, Frechilla D, Cenarruzabeitia E, León R, Arilla-Ferreiro E, Argente J, Barrios V (2009) The N-terminal tripeptide of insulin-like growth factor-I protects against beta-amyloid-induced somatostatin depletion by calcium and glycogen synthase kinase 3 beta modulation. J Neurochem 109:360–370

    Article  PubMed  CAS  Google Scholar 

  • Chen PC, Vargas MR, Pani AK, Smeyne RJ, Johnson DA, Kan YW, Johnson JA (2009) Nrf2-mediated neuroprotection in the MPTP mouse model of Parkinson’s disease: critical role for the astrocyte. Proc Natl Acad Sci USA 106:2933–2938

    Article  PubMed  CAS  Google Scholar 

  • Dahmer J, Whitesides GM (1989) Kinetic resolution of unnatural and rarely occurring amino acids: enantioselective hydrolysis of N-acyl amino acids catalyzed by acylase I. J Am Soc 111:6354–6364

    Article  Google Scholar 

  • Du F, Qian ZM, Zhu L, Wu XM, Yung WH, Tsim TY, Ke Y (2009) l-dopa neurotoxicity is mediated by up-regulation of DMT1-IRE expression. PLoS One 4:e4593

    Article  PubMed  Google Scholar 

  • Guan J, Waldvogel HJ, Faull RL, Gluckman PD, Williams CE (1999) The effects of the N-terminal tripeptide of insulin-like growth factor-1, glycine–proline–glutamate in different regions following hypoxic-ischemic brain injury in adult rats. Neuroscience 89:649–659

    Article  PubMed  CAS  Google Scholar 

  • Guan J, Krishnamurthi R, Waldvogel HJ, Faull RL, Clark R, Gluckman P (2000) N-terminal tripeptide of IGF-1 (GPE) prevents the loss of TH positive neurons after 6-OHDA induced nigral lesion in rats. Brain Res 859:286–292

    Article  PubMed  CAS  Google Scholar 

  • Guan J, Thomas GB, Lin H, Mathai S, Bachelor DC, George S, Gluckman PD (2004) Neuroprotective effects of the N-terminal tripeptide of insulin-like growth factor-1, glycine–proline–glutamate (GPE) following intravenous infusion in hypoxic–ischemic adult rats. Neuropharmacology 47:892–903

    Article  PubMed  CAS  Google Scholar 

  • Hattoria N, Wanga M, Taka H, Fujimura T, Yoritaka A, Kubo S, Mochizuki H (2009) Toxic effects of dopamine metabolism in Parkinson’s disease. Parkinsonism Relat Disord 15:S35–S38

    Article  PubMed  Google Scholar 

  • Innamorato NG, Jazwa A, Rojo AI, García C, Fernández-Ruiz J, Grochot-Przeczek A, Stachurska A, Jozkowicz A, Dulak J, Cuadrado A (2010) Different susceptibility to the Parkinson’s toxin MPTP in mice lacking the redox master regulator Nrf2 or its target gene heme oxygenase-1. PLoS One 5:e11838

  • Jadhav A, Torlakovic E, Ndisang JF (2008) Interaction among heme oxygenase, nuclear factor-kappaB, and transcription activating factors in cardiac hypertrophy in hypertension. Hypertension 52:910–917

    Article  PubMed  CAS  Google Scholar 

  • Jung KH, Hong SW, Zheng HM, Lee HS, Lee H, Lee DH, Lee SY, Hong SS (2001) Targeted expression of heme oxygenase-1 prevents the pulmonary inflammatory and vascular responses to hypoxia. Proc Natl Acad Sci USA 98:8798–8803

    Article  Google Scholar 

  • Jung KH, Hong SW, Zheng HM, Lee HS, Lee H, Lee DH, Lee SY, Hong SS (2010) Melatonin ameliorates cerulein-induced pancreatitis by the modulation of nuclear erythroid 2-related factor 2 and nuclear factor-kappaB in rats. J Pineal Res 48:239–250

    Article  PubMed  CAS  Google Scholar 

  • Katoh Y, Itoh K, Yoshida E, Miyagishi M, Fukamizu A, Yamamoto M (2001) Two domains of Nrf2 cooperatively bind CBP, a CREB binding protein, and synergistically activate transcription. Genes Cells 6:857–868

    Article  PubMed  CAS  Google Scholar 

  • Krishnamurthi R, Stott S, Maingay M, Faull RL, McCarthy D, Gluckman P, Guan J (2004) N-terminal tripeptide of IGF-1 improves functional deficits after 6-OHDA lesion in rats. Neuroreport 15:1601–1604

    Article  PubMed  CAS  Google Scholar 

  • Lee TS, Chau LY (2002) Heme oxygenase-1 mediates the anti-inflammatory effect of interleukin-10 in mice. Nat Med 8:240–246

    Article  PubMed  CAS  Google Scholar 

  • Minelli A, Conte C, Grottelli S, Bellezza I, Emiliani C, Bolaños JP (2009) Cyclo(His-Pro) up-regulates heme oxygenase 1 via activation of Nrf2-ARE signalling. J Neurochem 11:956–966

    Article  Google Scholar 

  • Minelli A, Conte C, Prudenzi E, Cacciatore I, Cornacchia C, Taha E, Pinnen F (2010) N-acetyl-l-methionyl-l-dopa-methyl ester as a dual acting drug that relieves l-dopa-induced oxidative toxicity. Free Radic Biol Med 49:31–39

    Article  PubMed  CAS  Google Scholar 

  • Nagatsua T, Sawadab M (2009) l-dopa therapy for Parkinson’s disease: past, present, and future. Parkinsonism Relat Disord 15(Suppl 1):S3–S8

    Article  PubMed  Google Scholar 

  • Pinnen F, Cacciatore I, Cornacchia C, Sozio P, Iannitelli A, Costa M, Pecci L, Nasuti C, Cantalamessa F, Di Stefano A (2007) Synthesis and study of l-dopa-glutathione codrugs as new anti-Parkinson agents with free radical scavenging properties. J Med Chem 50:2506–2510

    Article  PubMed  CAS  Google Scholar 

  • Pinnen F, Cacciatore I, Cornacchia C, Sozio P, Cerasa LS, Iannitelli A, Nasuti C, Cantalamessa F, Sekar D, Gabbianelli R, Falcioni ML, Di Stefano A (2009) Codrugs linking l-dopa and sulfur-containing antioxidants: new pharmacological tools against Parkinson’s disease. J Med Chem 52:559–563

    Article  PubMed  CAS  Google Scholar 

  • Rahman I, Kode A, Biswas SK (2006) Assay for quantitative determination of glutathione and glutathione disulfide levels using enzymatic recycling method. Nat Protoc 1:3159–3165

    Article  PubMed  CAS  Google Scholar 

  • Rojo AI, Innamorato NG, Martin-Moreno AM, De Ceballos ML, Yamamoto M, Cuadrado A (2010) Nrf2 regulates microglial dynamics and neuroinflammation in experimental Parkinson’s disease. Glia 58:588–598

    PubMed  Google Scholar 

  • Salminen A, Huuskonen J, Ojala J, Kauppinen A, Kaarniranta K, Suuronen T (2008) Activation of innate immunity system during aging: NF-kB signaling is the molecular culprit of inflamm-aging. Ageing Res Rev 7:83–105

    Article  PubMed  CAS  Google Scholar 

  • Sara VR, Carlsson-Skwirut C, Bergman T, Jörnvall H, Roberts PJ, Crawford M, Håkansson LN, Civalero I, Nordberg A (1989) Identification of Gly-Pro-Glu (GPE), the aminoterminal tripeptide of insulin-like growth factor 1 which is truncated in brain, as a novel neuroactive peptide. Biochem Biophys Res Commun 165:766–771

    Article  PubMed  CAS  Google Scholar 

  • Saura J, Curatolo L, Williams CE, Gatti S, Benatti L, Peeters C, Guan J, Dragunow M, Post C, Faull RL, Gluckman PD, Skinner SJ (1999) Neuroprotective effects of Gly-Pro-Glu, the N-terminal tripeptide of IGF-1, in the hippocampus in vitro. Neuroreport 10:161–164

    Article  PubMed  CAS  Google Scholar 

  • Schapira AH (2009) Etiology and pathogenesis of Parkinson disease. Neurol Clin 27:583–603

    Article  PubMed  Google Scholar 

  • Schmidt N, Ferger B (2001) Neurochemical findings in the MPTP model of Parkinson’s disease. J Neural Transm 108:1263–1282

    Article  PubMed  CAS  Google Scholar 

  • Shapira S, Mathai S, Zhang R, Guan J (2009) Delayed peripheral administration of the N-terminal tripeptide of IGF-1 (GPE) reduces brain damage following microsèhere induced embolic damage in young adult and aged rats. Neurosci Lett 454:53–57

    Article  PubMed  CAS  Google Scholar 

  • Sizonenko SV, Sirimanne ES, Williams CE, Gluckman PD (2001) Neuroprotective effects of the N-terminal tripeptide of IGF-1, glycine-proline-glutamate, in the immature rat brain after hypoxic-ischemic injury. Brain Res 922:42–50

    Article  PubMed  CAS  Google Scholar 

  • Weiner WJ (2006) Levodopa-toxic or neuroprotective? Nat Clin Pract Neurol 2:518–519

    Article  PubMed  Google Scholar 

  • Zhao X, Liu SJ, Zhang J, Strong R, Aronowski J, Grotta JC (2005) Combining insulin-like growth factor derivatives plus caffeinol produces robust neuroprotection after stroke in rats. Stroke 36:129–134

    Article  PubMed  CAS  Google Scholar 

  • Zou J, Crews F (2006) CREB and NF-kappaB transcription factors regulate sensitivity to excitotoxic and oxidative stress induced neuronal cell death. Cell Mol Neurobiol 26:385–405

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Mary Kerrigan (MA, Cantab) for helpful linguistic suggestions. The study was funded by Fondazione Cassa di Risparmio, Perugia, Italy (Grant 2009-010-0437). The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alba Minelli.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 21 kb)

Supplementary material 2 (DOC 36 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Minelli, A., Conte, C., Cacciatore, I. et al. Molecular mechanism underlying the cerebral effect of Gly-Pro-Glu tripeptide bound to l-dopa in a Parkinson’s animal model. Amino Acids 43, 1359–1367 (2012). https://doi.org/10.1007/s00726-011-1210-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-011-1210-x

Keywords

Navigation