Skip to main content

Advertisement

Log in

A potential estrogen mimetic effect of a bis(ethyl)polyamine analogue on estrogen receptor positive MCF-7 breast cancer cells

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

BE-3-3-3-3 (1,15-(ethylamino)4,8,12-triazapentadecane) is a bis(ethyl)polyamine analogue under investigation as a therapeutic agent for breast cancer. Since estradiol (E2) is a critical regulatory molecule in the growth of breast cancer, we examined the effect of BE-3-3-3-3 on estrogen receptor α (ERα) positive MCF-7 cells in the presence and absence of E2. In the presence of E2, a concentration-dependent decrease in DNA synthesis was observed using [3H]-thymidine incorporation assay. In the absence of E2, low concentrations (2.5–10 μM) of BE-3-3-3-3 increased [3H]-thymidine incorporation at 24 and 48 h. BE-3-3-3-3 induced the expression of early response genes, c-myc and c-fos, in the absence of E2, but not in its presence, as determined by real-time quantitative polymerase chain reaction (qPCR). BE-3-3-3-3 had no significant effect on these genes in an ERα-negative cell line, MDA-MB-231. Chromatin immunoprecipitation assay demonstrated enhanced promoter occupation by either E2 or BE-3-3-3-3 of an estrogen-responsive gene pS2/Tff1 by ERα and its co-activator, steroid receptor co-activator 3 (SRC-3). Confocal microscopy of BE-3-3-3-3-treated cells revealed membrane localization of ERα, similar to that induced by E2. The failure of BE-3-3-3-3 to inhibit cell proliferation was associated with autophagic vacuole formation, and the induction of Beclin 1 and MAP LC3 II. These results indicate a differential effect of BE-3-3-3-3 on MCF-7 cells in the absence and presence of E2, and suggest that pre-clinical and clinical development of polyamine analogues might require special precautions and selection of sensitive subpopulation of patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BE-3-3-3-3:

1,15-(ethylamino)4,8,12-triazapentadecane

BE-3-3-3:

Bis(ethyl) norspermine

APAO:

Acetylpolyamine oxidase

CHIP:

Chromatin immunoprecipitation

DAPI:

4′6′-diamidino-2-phenylindole

E2 :

Estradiol

ER:

Estrogen receptor

ERE:

Estrogen response element

ER(+):

ER-positive

ER(−):

ER-negative

GPR30:

G-protein-coupled receptor homologue 30

MAP LC3:

Microtubule-associated protein 1 light chain 3

N 1-AcSpd:

N 1-acetylspermidine

NCoR:

Nuclear receptor co-repressor

ODC:

Ornithine decarboxylase

Put:

Putrescine

qPCR:

Quantitative polymerase chain reaction

SAMDC:

S-adenosyl l-methionine decarboxylase

STR:

Short tandem repeat

Spd:

Spermidine

Spm:

Spermine

SSAT:

Spermidine/spermine-N1-acetyltransferase

SMO:

Spermine oxidase

SRC-3:

Steroid receptor co-activator 3

References

  • Abedin MJ, Wang D, McDonnell MA, Lehmann U, Kelekar A (2007) Autophagy delays apoptotic death in breast cancer cells following DNA damage. Cell Death Differ 14:500–510

    Article  PubMed  CAS  Google Scholar 

  • Agostinelli E, Marques MP, Calheiros R, Gil FP, Tempera G, Viceconte N, Battaglia V, Grancara S, Toninello A (2010a) Polyamines: fundamental characters in chemistry and biology. Amino Acids 38:393–403

    Article  PubMed  CAS  Google Scholar 

  • Agostinelli E, Tempera G, Viceconte N, Saccoccio S, Battaglia V, Grancara S, Toninello A, Stevanato R (2010b) Potential anticancer application of polyamine oxidation products formed by amine oxidase: a new therapeutic approach. Amino Acids 38:353–368

    Article  PubMed  CAS  Google Scholar 

  • Bernacki RJ, Bergeron RJ, Porter CW (1992) Antitumor activity of N, N’-bis(ethyl)spermine homologues against human MALME-3 melanoma xenografts. Cancer Res 52:2424–2430

    PubMed  CAS  Google Scholar 

  • Bernacki RJ, Oberman EJ, Seweryniak KE, Atwood A, Bergeron RJ, Porter CW (1995) Preclinical antitumor efficacy of the polyamine analogue N1, N11-diethylnorspermine administered by multiple injection or continuous infusion. Clin Cancer Res 1:847–857

    PubMed  CAS  Google Scholar 

  • Casero RA Jr, Marton LJ (2007) Targeting polyamine metabolism and function in cancer and other hyperproliferative diseases. Nat Rev Drug Discov 6:373–390

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Kramer DL, Diegelman P, Vujcic S, Porter CW (2001) Apoptotic signaling in polyamine analogue- treated SK-MEL-28 human melanoma cells. Cancer Res 61:6437–6444

    PubMed  CAS  Google Scholar 

  • Creaven PJ, Perez R, Pendyala L, Meropol NJ, Loewen G, Levine E, Berghorn E, Raghavan D (1997) Unusual central nervous system toxicity in a phase I study of N1, N11-diethylnorspermine in patients with advanced malignancy. Invest New Drugs 15:227–234

    Article  PubMed  CAS  Google Scholar 

  • Dai H, Kramer DL, Yang C, Murti KG, Porter CW, Cleveland JL (1999) The polyamine oxidase inhibitor MDL-72, 527 selectively induces apoptosis of transformed hematopoietic cells through lysosomotropic effects. Cancer Res 59:4944–4954

    PubMed  CAS  Google Scholar 

  • Daniel F, Legrand A, Pessayre D, Vadrot N, Descatoire V, Bernuau D (2006) Partial Beclin 1 silencing aggravates doxorubicin- and Fas-induced apoptosis in HepG2 cells. World J Gastroenterol 12:2895–2900

    PubMed  CAS  Google Scholar 

  • Dolfini E, Roncoroni L, Dogliotti E, Sala G, Erba E, Sacchi N, Ghidoni R (2007) Resveratrol impairs the formation of MDA-MB-231 multicellular tumor spheroids concomitant with ceramide accumulation. Cancer Lett 249:143–147

    Article  PubMed  CAS  Google Scholar 

  • Eisenberg T, Knauer H, Schauer A, Buttner S, Ruckenstuhl C, Carmona-Gutierrez D, Ring J, Schroeder S, Magnes C, Antonacci L, Fussi H, Deszcz L et al (2009) Induction of autophagy by spermidine promotes longevity. Nat Cell Biol 11:1305–1314

    Article  PubMed  CAS  Google Scholar 

  • Faaland CA, Thomas TJ, Balabhadrapathruni S, Langer T, Mian S, Shirahata A, Gallo MA, Thomas T (2000) Molecular correlates of the action of bis(ethyl)polyamines in breast cancer cell growth inhibition and apoptosis. Biochem Cell Biol 78:415–426

    Article  PubMed  CAS  Google Scholar 

  • Gerner EW, Meyskens FL Jr (2004) Polyamines and cancer: old molecules, new understanding. Nat Rev Cancer 4:781–792

    Article  PubMed  CAS  Google Scholar 

  • Häkkinen MR, Hyvönen MT, Auriola S, Casero RA Jr, Vepsäläinen J, Khomutov AR, Alhonen L, Keinänen TA (2009) Metabolism of N-alkylated spermine analogues by polyamine and spermine oxidases. Amino Acids 38:369–381

    Article  PubMed  Google Scholar 

  • Hyvönen T, Keinänen TA, Khomutov AR, Khomutov RM, Eloranta TO (1992) Monitoring of the uptake and metabolism of aminooxy analogues of polyamines in cultured cells by high-performance liquid chromatography. J Chromatogr 574:17–21

    Article  PubMed  Google Scholar 

  • Jänne J, Williams-Ashman HG (1971) On the purification of l-ornithine decarboxylase from rat prostate and effects of thiol compounds on the enzyme. J Biol Chem 246:1725–1732

    PubMed  Google Scholar 

  • John S, Nayvelt I, Hsu HC, Yang P, Liu W, Das GM, Thomas T, Thomas TJ (2008) Regulation of estrogenic effects by beclin 1 in breast cancer cells. Cancer Res 68:7855–7863

    Article  PubMed  CAS  Google Scholar 

  • Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E, Ohsumi Y, Yoshimori T (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19:5720–5728

    Article  PubMed  CAS  Google Scholar 

  • Kadowaki M, Karim MR (2009) Cytosolic LC3 ratio as a quantitative index of macroautophagy. Methods Enzymol 452:199–213

    Article  PubMed  CAS  Google Scholar 

  • Karmakar S, Foster EA, Smith CL (2009) Unique roles of p160 coactivators for regulation of breast cancer cell proliferation and estrogen receptor-alpha transcriptional activity. Endocrinology 150:1588–1596

    Article  PubMed  CAS  Google Scholar 

  • Katzenellenbogen BS, Frasor J (2004) Therapeutic targeting in the estrogen receptor hormonal pathway. Semin Oncol 31:28–38

    Article  PubMed  CAS  Google Scholar 

  • Klionsky DJ, Abeliovich H, Agostinis P, Agrawal DK, Aliev G, Askew DS, Baba M, Baehrecke EH, Bahr BA, Ballabio A, Bamber BA, Bassham DC et al (2008) Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy 4:151–175

    PubMed  CAS  Google Scholar 

  • Konduri SD, Medisetty R, Liu W, Kaipparettu BA, Srivastava P, Brauch H, Fritz P, Swetzig WM, Gardner AE, Khan SA, Das GM (2010) Mechanism of estrogen receptor antagonism toward p53 and its implications in breast cancer therapeutic response and stem cell regulation. Proc Natl Acad Sci USA 107:15081–15086

    Article  PubMed  CAS  Google Scholar 

  • Kramer DL, Black JD, Mett H, Bergeron RJ, Porter CW (1998) Lysosomal sequestration of polyamine analogues in Chinese hamster ovary cells resistant to the S-adenosylmethionine decarboxylase inhibitor, CGP-48664. Cancer Res 58:3883–3890

    PubMed  CAS  Google Scholar 

  • Leveque J, Foucher F, Bansard JY, Havouis R, Grall JY, Moulinoux JP (2000a) Polyamine profiles in tumor, normal tissue of the homologous breast, blood, and urine of breast cancer sufferers. Breast Cancer Res Treat 60:99–105

    Article  PubMed  CAS  Google Scholar 

  • Leveque J, Foucher F, Havouis R, Desury D, Grall JY, Moulinoux JP (2000b) Benefits of complete polyamine deprivation in hormone responsive and hormone resistant MCF-7 human breast adenocarcinoma in vivo. Anticancer Res 20:97–101

    PubMed  CAS  Google Scholar 

  • Levin ER, Pietras RJ (2008) Estrogen receptors outside the nucleus in breast cancer. Breast Cancer Res Treat 108:351–361

    Article  PubMed  CAS  Google Scholar 

  • Levine B, Yuan J (2005) Autophagy in cell death: an innocent convict? J Clin Invest 115:2679–2688

    Article  PubMed  CAS  Google Scholar 

  • Liang XH, Jackson S, Seaman M, Brown K, Kempkes B, Hibshoosh H, Levine B (1999) Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402:672–676

    Article  PubMed  CAS  Google Scholar 

  • Maggiolini M, Vivacqua A, Fasanella G, Recchia AG, Sisci D, Pezzi V, Montanaro D, Musti AM, Picard D, Ando S (2004) The G protein-coupled receptor GPR30 mediates c-fos up-regulation by 17beta-estradiol and phytoestrogens in breast cancer cells. J Biol Chem 279:27008–27016

    Article  PubMed  CAS  Google Scholar 

  • Manni A, Badger B, Martel J, Demers L (1992) Role of polyamines in the growth of hormone- responsive and—resistant human breast cancer cells in nude mice. Cancer Lett 66:1–9

    Article  PubMed  CAS  Google Scholar 

  • McCloskey DE, Casero RA Jr, Woster PM, Davidson NE (1995) Induction of programmed cell death in human breast cancer cells by an unsymmetrically alkylated polyamine analogue. Cancer Res 55:3233–3236

    PubMed  CAS  Google Scholar 

  • Minchin RF, Knight S, Arulpragasam A, Fogel-Petrovic M (2006) Concentration-dependent effects of N1, N11-diethylnorspermine on melanoma cell proliferation. Int J Cancer 118:509–512

    Google Scholar 

  • Musso M, Thomas T, Shirahata A, Sigal LH, Van Dyke MW, Thomas TJ (1997) Effects of chain length modification and bis(ethyl) substitution of spermine analogs on purine–purine-pyrimidine triplex DNA stabilization, aggregation, and conformational transitions. Biochemistry 36:1441–1449

    Article  PubMed  CAS  Google Scholar 

  • Noda NN, Kumeta H, Nakatogawa H, Satoo K, Adachi W, Ishii J, Fujioka Y, Ohsumi Y, Inagaki F (2008) Structural basis of target recognition by Atg8/LC3 during selective autophagy. Genes Cells 13:1211–1218

    Article  PubMed  CAS  Google Scholar 

  • O’Malley BW, Kumar R (2009) Nuclear receptor coregulators in cancer biology. Cancer Res 69:8217–8222

    Article  PubMed  Google Scholar 

  • Palmer AJ, Wallace HM (2010) The polyamine transport system as a target for anticancer drug development. Amino Acids 38:415–422

    Article  PubMed  CAS  Google Scholar 

  • Pledgie A, Huang Y, Hacker A, Zhang Z, Woster PM, Davidson NE, Casero RA Jr (2005) Spermine oxidase SMO(PAOh1), Not N1-acetylpolyamine oxidase PAO, is the primary source of cytotoxic H2O2 in polyamine analogue-treated human breast cancer cell lines. J Biol Chem 280:39843–39851

    Article  PubMed  CAS  Google Scholar 

  • Porter CW, Stanek J, Black J, Vaughan M, Ganis B, Pleshkewych A (1990) Morphological evidence for an apparent lysosomotropic activity by unsaturated putrescine analogues. Cancer Res 50:1929–1935

    PubMed  CAS  Google Scholar 

  • Porter CW, Bernacki RJ, Miller J, Bergeron RJ (1993) Antitumor activity of N1, N11-bis(ethyl)norspermine against human melanoma xenografts and possible biochemical correlates of drug action. Cancer Res 53:581–586

    PubMed  CAS  Google Scholar 

  • Sasaki H, Hayakawa J, Terai Y, Kanemura M, Tanabe-Kimura A, Kamegai H, Seino-Noda H, Ezoe S, Matsumura I, Kanakura Y, Sakata M, Tasaka K et al (2008) Difference between genomic actions of estrogen versus raloxifene in human ovarian cancer cell lines. Oncogene 27:2737–2745

    Article  PubMed  CAS  Google Scholar 

  • Scarlatti F, Sala G, Somenzi G, Signorelli P, Sacchi N, Ghidoni R (2003) Resveratrol induces growth inhibition and apoptosis in metastatic breast cancer cells vid de novo ceramide signaling. FASEB J 17:2339–2341

    PubMed  CAS  Google Scholar 

  • Scarlatti F, Maffei R, Beau I, Codogno P, Ghidoni R (2008) Role of non-canonical Beclin 1- independent autophagy in cell death induced by resveratrol in human breast cancer cells. Cell Death Differ 15:1318–1329

    Article  PubMed  CAS  Google Scholar 

  • Shah N, Thomas TJ, Lewis JS, Klinge CM, Shirahata A, Gelinas C, Thomas T (2001) Regulation of estrogenic and nuclear factor kappa B functions by polyamines and their role in polyamine analog-induced apoptosis of breast cancer cells. Oncogene 20:1715–1729

    Article  PubMed  CAS  Google Scholar 

  • Shah N, Antony T, Haddad S, Amenta P, Shirahata A, Thomas TJ, Thomas T (1999) Antitumor effects of bis(ethyl)polyamine analogs on mammary tumor development in FVB/NTgN (MMTVneu) transgenic mice. Cancer Lett 146:15–23

    Article  PubMed  CAS  Google Scholar 

  • Shappell NW, Miller JT, Bergeron RJ, Porter CW (1992) Differential effects of the spermine analog, N1, N12- bis(ethyl)-spermine, on polyamine metabolism and cell growth in human melanoma cell lines and melanocytes. Anticancer Res 12:1083–1089

    PubMed  CAS  Google Scholar 

  • Stanic I, Facchini A, Borzi RM, Stefanelli C, Flamigni F (2009) The polyamine analogue N1, N11- diethylnorspermine can induce chondrocyte apoptosis independently of its ability to alter metabolism and levels of natural polyamines. J Cell Physiol 219:109–116

    Article  PubMed  CAS  Google Scholar 

  • Streiff RR, Bender JF (2001) Phase 1 study of N1–N11-diethylnorspermine (DENSPM) administered TID for 6 days in patients with advanced malignancies. Invest New Drugs 19:29–39

    Article  PubMed  CAS  Google Scholar 

  • Tanida I, Ueno T, Kominami E (2004) LC3 conjugation system in mammalian autophagy. Int J Biochem Cell Biol 36:2503–2518

    Article  PubMed  CAS  Google Scholar 

  • Thomas T, Gallo MA, Thomas TJ (2004) Estrogen receptors as targets for drug development for breast cancer, osteoporosis and cardiovascular diseases. Curr Cancer Drug Targets 4:483–499

    Article  PubMed  CAS  Google Scholar 

  • Thomas T, Thomas TJ (1994a) Estradiol control of ornithine decarboxylase mRNA, enzyme activity, and polyamine levels in MCF-7 breast cancer cells: therapeutic implications. Breast Cancer Res Treat 29:189–201

    Article  PubMed  CAS  Google Scholar 

  • Thomas T, Thomas TJ (1994b) Regulation of cyclin B1 by estradiol and polyamines in MCF-7 breast cancer cells. Cancer Res 54:1077–1084

    PubMed  CAS  Google Scholar 

  • Thomas T, Thomas TJ (2001) Polyamines in cell growth and cell death: molecular mechanisms and therapeutic applications. Cell Mol Life Sci 58:244–258

    Article  PubMed  CAS  Google Scholar 

  • Thomas T, Thomas TJ (2003) Polyamine metabolism and cancer. J Cell Mol Med 7:113–126

    Article  PubMed  CAS  Google Scholar 

  • Uimari A, Keinänen TA, Karppinen A, Woster P, Uimari P, Jänne J, Alhonen L (2009) Spermine analogue-regulated expression of spermidine/spermine N1-acetyltransferase and its effects on depletion of intracellular polyamine pools in mouse fetal fibroblasts. Biochem J 422:101–109

    Article  PubMed  CAS  Google Scholar 

  • Vijayanathan V, Venkiteswaran S, Nair SK, Verma A, Thomas TJ, Zhu BT, Thomas T (2006) Physiologic levels of 2-methoxyestradiol interfere with nongenomic signaling of 17beta-estradiol in human breast cancer cells. Clin Cancer Res 12:2038–2048

    Article  PubMed  CAS  Google Scholar 

  • Vogel CF, Matsumura F (2009) A new cross-talk between the aryl hydrocarbon receptor and RelB, a member of the NF-kappaB family. Biochem Pharmacol 77:734–745

    Article  PubMed  CAS  Google Scholar 

  • Wolff AC, Armstrong DK, Fetting JH, Carducci MK, Riley CD, Bender JF, Casero RA Jr, Davidson NE (2003) A Phase II study of the polyamine analog N1, N11-diethylnorspermine (DENSpm) daily for five days every 21 days in patients with previously treated metastatic breast cancer. Clin Cancer Res 9:5922–5928

    PubMed  CAS  Google Scholar 

  • Yager JD, Davidson NE (2006) Estrogen carcinogenesis in breast cancer. N Engl J Med 354:270–282

    Article  PubMed  CAS  Google Scholar 

  • Zhong Y, Wang QJ, Li X, Yan Y, Backer JM, Chait BT, Heintz N, Yue Z (2009) Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex. Nat Cell Biol 11:468–476

    Article  PubMed  CAS  Google Scholar 

  • Zhou M, Panchuck-Voloshina NA (1997) A one-step fluorimetric method for the continuous measurement of monoamine oxidase activity. Anal Biochem 253:169–174

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Mrs. Tuula Reponen, Mrs. Anne Karppinen and Mrs. Arja Korhonen (University of Eastern Finland) for their skilful technical assistance. This work was supported, in part, by grants from the Foundation of UMDNJ (64-09 and PC28-1), Susan G. Komen ‘For The Cure’ grant BCTR 0600180, the Academy of Finland, and by UEF Strategic Funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. J. Thomas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nayvelt, I., John, S., Hsu, HC. et al. A potential estrogen mimetic effect of a bis(ethyl)polyamine analogue on estrogen receptor positive MCF-7 breast cancer cells. Amino Acids 42, 899–911 (2012). https://doi.org/10.1007/s00726-011-1005-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-011-1005-0

Keywords

Navigation